
Pentesting Azure Applications is a comprehen-
sive guide to penetration testing cloud services
deployed in Microsoft Azure, the popular cloud
computing service provider used by numerous
companies. You’ll start by learning how to
 approach a cloud-focused penetration test and
how to obtain the proper permissions to exe-
cute it; then, you’ll learn to perform reconnais-
sance on an Azure subscription, gain access to
Azure Storage accounts, and dig into Azure’s
Infrastructure as a Service (IaaS).

You’ll also learn how to:

 Uncover weaknesses in virtual machine
settings that enable you to acquire pass-
words, binaries, code, and settings files

 Use PowerShell commands to find
IP addresses, administrative users,
and resource details

 Find security issues related to multi-
factor authentication and management
 certificates

 Penetrate networks by enumerating
 firewall rules

 Investigate specialized services like Azure
Key Vault, Azure Web Apps, and Azure
Automation

 View logs and security events to find out
when you’ve been caught

Packed with sample pentesting scripts, practi-
cal advice for completing security assessments,
and tips that explain how companies can con-
figure Azure to foil common attacks, Pentesting
Azure Applications is a clear overview of how
to effectively perform cloud-focused security
tests and provide accurate findings and recom-
mendations.

About the Author
Matt Burrough is a senior penetration tester
on a corporate red team, where he assesses the
security of cloud computing services and inter-
nal systems. He holds a bachelor’s degree in
networking, security, and system administra-
tion from Rochester Institute of Technology and
a master’s degree in computer science from the
University of Illinois at Urbana-Champaign.

“Gives you a leg up on pentesting
and defending Microsoft Azure.”

 — Thomas W. Shinder, MD

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Burrough

Pentesting Azure Applications

Pentesting Azure
Applications

The Definitive Guide to
Testing and Securing Deployments

The Definitive Guide to Testing and Securing Deployments

Price: $39.95 ($53.95 CDN)

Shelve In: ComPuterS/SeCurIty

Matt Burrough
Foreword by Thomas W. Shinder, MD

Pentesting Azure APPlicAtions

P e n t e s t i n g
A z u r e

A P P l i c A t i o n s
t h e D e f i n i t i v e g u i d e t o

t e s t i n g a n d s e c u r i n g
D e p l o y m e n t s

by Matt Burrough

San Francisco

Pentesting Azure APPlicAtions. Copyright © 2018 by Matt Burrough.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-863-2
ISBN-13: 978-1-59327-863-2

Publisher: William Pollock
Production Editor: Riley Hoffman
Cover Illustration: Jonny Thomas
Interior Design: Octopod Studios
Developmental Editors: William Pollock and Zach Lebowski
Technical Reviewer: Thomas W. Shinder
Copyeditor: Barton D. Reed
Compositors: Riley Hoffman and Happenstance Type-O-Rama
Proofreader: James Fraleigh

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Burrough, Matt, author.
Title: Pentesting Azure applications : the definitive guide to testing and
 securing deployments / Matt Burrough.
Description: San Francisco : No Starch Press, 2018.
Identifiers: LCCN 2017051237 (print) | LCCN 2018000235 (ebook) | ISBN
 9781593278649 (epub) | ISBN 1593278640 (epub) | ISBN 9781593278632
 (paperback) | ISBN 9781593278649 (ebook)
Subjects: LCSH: Cloud computing--Security measures. | Windows Azure--Security
 measures. | Penetration testing (Computer security) | BISAC: COMPUTERS /
 Security / General. | COMPUTERS / Internet / Security.
Classification: LCC QA76.585 (ebook) | LCC QA76.585 .B875 2018 (print) | DDC
 305.8--dc23
LC record available at https://lccn.loc.gov/2017051237

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Azure is a
trademark of Microsoft. Other product and company names mentioned herein may be the trademarks of
their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name,
we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

About the Author
Matt Burrough is a senior penetration tester on a corporate red team at
a large software company, where he assesses the security of cloud com-
puting services and internal systems. He frequently attends hacker and
information security conferences. Burrough holds a bachelor’s degree in
networking, security, and system administration from Rochester Institute
of Technology and a master’s in computer science from the University of
Illinois at Urbana-Champaign.

About the Technical Reviewer
Tom Shinder is a cloud security program manager for one of the big
three public cloud service providers. He is responsible for security tech-
nical content and education, customer engagements, and competitive
analysis. He has presented at many of the largest security conferences
on topics related to both on-premises and public cloud security and
architecture. Tom earned a bachelor’s degree in neurobiopsychology
from the University of California, Berkeley, and an MD from the Univer-
sity of Illinois, Chicago. He was a practicing neurologist prior to changing
careers in the 1990s. He has written over 30 books on OS, network, and
cloud security, including Microsoft Azure Security Infrastructure and
Microsoft Azure Security Center (IT Best Practices series, Microsoft Press).
Tom can be found hugging his Azure console when he’s not busy hiding
his keys and secrets in Azure Key Vault.

To my amazing wife, Megan, who inspires me
and supports me in all my crazy endeavors.

And to my mom, who made me
the writer I am today.

B r i e f C o n t e n t s

Foreword by Thomas W. Shinder, MD . xv

Acknowledgments . xix

Introduction . xxi

Chapter 1: Preparation. 1

Chapter 2: Access Methods . 9

Chapter 3: Reconnaissance. 35

Chapter 4: Examining Storage. 69

Chapter 5: Targeting Virtual Machines . 91

Chapter 6: Investigating Networks . 115

Chapter 7: Other Azure Services . 139

Chapter 8: Monitoring, Logs, and Alerts . 163

Glossary . 179

Index . 185

C o n t e n t s i n D e t a i l

Foreword by Thomas w. Shinder, Md xv

AcknowledgMenTS xix

InTroducTIon xxi
About Penetration Testing . xxii
What This Book Is About . xxii
How This Book Is Organized .xxiii
What You’ll Need to Run the Tools . .xxiv

1
PrePArATIon 1
A Hybrid Approach . 2

Teams Don’t Always Have Cloud Experience . 2
Clouds Are Reasonably Secure by Default . 2
It’s All Connected . 3

Getting Permission . 3
Scope the Assessment . 3
Notify Microsoft . 4
Obtain a “Get Out of Jail Free” Card . 6
Be Aware of and Respect Local Laws . 7

Summary . 8

2
AcceSS MeThodS 9
Azure Deployment Models . 10

Azure Service Management . 10
Azure Resource Manager . 13

Obtaining Credentials . 15
Mimikatz . 15

Using Mimikatz . 15
Capturing Credentials . 16
Factors Affecting Success . 17

Best Practices: Usernames and Passwords . 18
Usernames and Passwords . 19

Searching Unencrypted Documents . 19
Phishing . 19
Looking for Saved ARM Profile Tokens . 20
Guessing Passwords . 21

Best Practices: Management Certificates . 22
Finding Management Certificates . 23

Publish Settings Files . 23
Reused Certificates . 24
Configuration Files . 24
Cloud Service Packages . 25

Best Practices: Protecting Privileged Accounts . 26

xii Contents in Detail

Encountering Two-Factor Authentication . 26
Using Certificate Authentication . 28
Using a Service Principal or a Service Account . 28
Accessing Cookies . 28
Proxying Traffic Through the User’s Browser . 29
Utilizing Smartcards . 30
Stealing a Phone or Phone Number . 31
Prompting the User for 2FA . 32

Summary . 33

3
reconnAISSAnce 35
Installing PowerShell and the Azure PowerShell Module . 36

On Windows . 36
On Linux or macOS . 36
Running Your Tools . 37

Service Models . 38
Best Practices: PowerShell Security . 39
Authenticating with the PowerShell Module and CLI . 40
Authenticating with Management Certificates . 40

Installing the Certificate . 41
Authenticating . 41
Connecting and Validating Access . 42

Best Practices: Service Principals . 43
Authenticating with Service Principals . 44

Using Service Principals with Passwords . 44
Authenticating with X .509 Certificates . 45

Best Practices: Subscription Security . 46
Gathering Subscription Information . 47

Viewing Resource Groups . 49
Viewing a Subscription’s App Services (Web Apps) 50
Gathering Information on Virtual Machines . 51
Finding Storage Accounts and Storage Account Keys 54

Gathering Information on Networking . 56
Network Interfaces . 56
Obtaining Firewall Rules or Network Security Groups 59
Viewing Azure SQL Databases and Servers . 61

Consolidated PowerShell Scripts . 63
ASM Script . 64
ARM Script . 66

Summary . 68

4
exAMInIng STorAge 69
Best Practices: Storage Security . 70
Accessing Storage Accounts . 71

Storage Account Keys . 71
User Credentials . 71
SAS Tokens . 72

Where to Find Storage Credentials . 73
Finding Keys in Source Code . 73
Obtaining Keys from a Developer’s Storage Utilities 73

Contents in Detail xiii

Accessing Storage Types . 81
Identifying the Storage Mechanisms in Use . 81
Accessing Blobs . 83
Accessing Tables . 85
Accessing Queues . 86
Accessing Files . 88

Summary . 90

5
TArgeTIng VIrTuAl MAchIneS 91
Best Practices: VM Security . 92
Virtual Hard Disk Theft and Analysis . 92

Downloading a VHD Snapshot . 93
Retrieving a VHD’s Secrets . 94

Exploring the VHD with Autopsy . 95
Importing the VHD . 95
Analyzing Windows VHDs . 98
Analyzing Linux VHDs . 100

Cracking Password Hashes . 100
Dictionary Attacks . 101
Brute-Force Attacks . 101
Hybrid Attacks . 101
Rainbow Table Attacks . 102
Weaknesses in Windows Password Hashes . 102

Password Hash Attack Tools . 103
Attacking Hashes with Cain & Abel . 104
Testing Hashes with hashcat . 106

Using a VHD’s Secrets Against a VM . 107
Determining the Hostname . 107
Finding a Remote Administration Service . 108

Resetting a Virtual Machine’s Credentials . 111
How to Reset a VM’s Credentials . 111
Downsides to Password Resets . 112

Summary . 113

6
InVeSTIgATIng neTworkS 115
Best Practices: Network Security . 116
Avoiding Firewalls . 117

Virtual Machine Firewalls . 117
Azure SQL Firewalls . 119
Azure Web Application Firewalls . 121

Cloud-to-Corporate Network Bridging . 123
Virtual Private Networks . 123
ExpressRoute . 130
Service Bus . 133
Logic Apps . 136

Summary . 137

xiv Contents in Detail

7
oTher Azure SerVIceS 139
Best Practices: Key Vault . 140
Examining Azure Key Vault . 140

Displaying Secrets . 141
Displaying Keys . 142
Displaying Certificates . 143
Accessing Key Vault from Other Azure Services . 145

Targeting Web Apps . 146
Deployment Methods . 147
Obtaining Deployment Credentials . 148
Creating and Searching for Artifacts on Web App Servers 150

Best Practices: Automation . 151
Leveraging Azure Automation . 152

Obtaining Automation Assets . 152
Hybrid Workers . 157

Summary . 161

8
MonITorIng, logS, And AlerTS 163
Azure Security Center . 164

Utilizing Security Center’s Detection Capabilities . 164
Utilizing Security Center’s Prevention Capabilities . 167

Operations Management Suite . 168
Setting Up OMS . 169
Reviewing Alerts in OMS . 171

Secure DevOps Kit . 173
Custom Log Handling . 175
Summary . 177

gloSSAry 179

Index 185

F o r e w o r d

It’s interesting how history demonstrates the ebb and
flow of ideas. In many cases, it’s the same ideas find-
ing themselves ebbing and flowing. Maybe ebb and
flow isn’t the best analogy. Better would be the pen-
dulum. A topic captures the imagination of a popula-
tion for a period of time, and then as the pendulum
moves in the other direction, that population loses
interest in the topic. Of course, the topic doesn’t go
away. It just gets buried by new issues du jour.

The mid-2000s were a heyday for security professionals. Everyone
wanted to be a security specialist, and the fields were green for them.
The threat environment was relatively unsophisticated, and even simple
methods for shoring up defenses made a big difference. Then the pen-
dulum started to move in the other direction, and security was less of “a
thing,” so the flocks of people who went into security flew in another direc-
tion. A few stuck around—mostly because they were born “security people.”

xvi Foreword

The pendulum has moved back to where it was 15 years ago. Security is
big, and it’s big because of public cloud computing.

IT security or cybersecurity is, at its core, about detecting, defend-
ing against, and responding to threats to your IT infrastructure, services,
technologies, and data. The view you take on each of these areas might
be used to define you as either a defender or an attacker. The cop and the
criminal each must be aware of what the other knows and how they act on
what they know. Cops who have no insights into criminal motivations and
behavior are going to have a very low collar rate. Criminals who want to
stay in the game have to know the strategies and tactics used by the cops.

In IT, the “cop” role belongs to the defender—the person or group
responsible for making sure all their systems and data are resistant and
resilient to the actions of the attackers. The attacker is the one trying to
find flaws and misconfigurations in either the IT systems or the people
who manage those systems. For an attacker, success leads to unauthorized
access to the systems and the data contained in them.

Matt Burrough addresses penetration testing, or pentesting, in this
book. A pentester acts in the role of an attacker but without the criminal
intent and potentially destructive results. A good pentester knows what
cyber-criminals know and also what IT defenders know. The pentester
wears a white hat but understands the capabilities and motivations of black
and gray hats. Using knowledge and techniques from both the “good” and
“bad” guys, pentesters learn about weaknesses in a system and communi-
cate what they learn so defenders can improve overall system security.

The core value, and the best and most positive influence this text will
have, is in its support of the defender perspective. In the pages that follow,
Matt walks you through a number of pentesting scenarios that will help you
find security issues that need to be addressed in Azure-based IT solutions.
Note that these are weaknesses in the solutions set up by Azure customers,
not in the Azure Fabric itself; no one outside of Microsoft is allowed to pen-
test the Azure Fabric infrastructure. Throughout the book, defenders’ tips,
tricks, and positive actions are described so that you’ll be able to anticipate
the pentesters’ exploits, thus significantly improving the overall system
security as a whole, even before any pentesting activity starts.

Whether you’re a pentester, a defender, or an observer who sits back
with popcorn and watches the battles and dramas unfold, the following
pages are going to have something you can use, take action on, watch out
for, measure, monitor, report, review, react to, and remediate.

Some readers might notice that much of the information in this book
can be found, with enough time and effort, in Azure’s online documenta-
tion. But how many hundreds, maybe thousands, of hours would it take
you to find this information, then sequence and arrange it in such a way
that makes it easier for you understand, and then put it all together so that
you can actually perform effective pentesting exercises and harden your
defenses based on what you’ve learned?

That’s what really sets this book apart from the documentation—its
critical and contextual understanding and actionability. The documenta-
tion provides basic descriptions of the services and, at times, a few code

Foreword xvii

snippets—it is not meant to educate. There’s a big difference between docu-
menting (or describing) something and teaching (or driving toward under-
standing and usefulness); this book teaches.

For example, there’s a big difference in value and actionability between
“documenting” a horse as “a brown mammal with four legs and a long face”
and being the jockey of that same horse and riding it in the Kentucky Derby.
It’s the same horse, but your understanding of the animal is going to be
very different in those two situations, and your ability to work with that ani-
mal will be radically different. Matt helps you experience pentesting and IT
security from the perspective of the jockey, so buckle up!

Matt is an impressive writer and teacher, and he’s going to give you a
leg up on pentesting and defending Microsoft Azure. Not only has it been
an honor and a privilege to perform a technical review of this book, it’s
also been a huge educational experience. Reading this book, I found that I
learned a lot by seeing things through Matt’s eyes, and that my understand-
ing of the ideas, concepts, procedures, and processes I thought I already
knew well got even better. A sign of a true sensei!

Okay, enough of the sales pitch! Let’s get started. Of course, you can
read any chapter you like in any order you like, but I recommend that you
start at the beginning—with the introduction. Matt is a tremendous edu-
cator and he really cares that you “get it.” His effectiveness comes from
building understanding by nicely fitting and stacking one concept onto
the other: one concept on top, one on the side, one on the other side, and
so forth. By the end, your edifice of understanding will be complete, you’ll
actually understand what you’re reading, and you’ll be able to put what you
learned into immediate action.

Thomas W. Shinder, MD

A c k n o w l e d g m e n t s

There are a number of people I’d like to thank for
helping to make this book a possibility. My family—
my wife, Megan, for all the love and support in this
and every other part of our lives; my mom, for giving
me my work ethic and love of prose; and my stepdad, for encouraging me to
pursue technology and for sharing his ethics. And thanks to everyone else
in my family who encouraged me through the years. I’d also like to thank
all of the foster children who have lived with us before and during my time
writing this book; you all have taught me a lot about life and made it more
interesting. Finally, thanks to our furry family for providing snuggles and
playing fetch when I felt stuck.

Professionally, I owe much to my manager Eric Leonard. He gave me
a chance to make my long-desired jump from IT and software engineer-
ing to infosec, and encouraged me to write this book. I also appreciate the
thorough feedback and constant encouragement from my friend, Johannes
Hemmerlein. I’m grateful to Tom Shinder, my ever-supportive tech edi-
tor who made sure this book was informative and correct. Thank you to
my infosec colleagues past and present: Katie Chuzie, Emmanuel Ferran,
Johannes Hemmerlein, Caleb Jaren, Zach Masiello, Jordyn Puryear, Mike

xx Acknowledgments

Ricks, Andrei Saygo, and Whitney Winders for helping me aspire to be
a better pentester every day. Finally, thank you to the Azure team as a
whole—you have created a truly great product, and make my job as a pen-
tester difficult.

As an author, I can’t thank the team at No Starch Press enough. Bill
Pollock, thank you for taking a chance on a first-time author, for providing
all the valuable feedback on my manuscript, and especially for being such
a huge part of the infosec community and publishing books I want to read.
Zach Lebowski, thank you for your editing. Thanks also to Riley Hoffman
and Tyler Ortman for keeping everything organized and on track, and
making sure I didn’t miss anything. Others at No Starch—Anna Morrow,
Serena Yang, and Amanda Hariri—were great, too. Finally, thanks to
Jonny Thomas for the wonderful cover and to Bart Reed for the copyedits.

Lastly, I want to thank my college professors and IT Student Organiza-
tion friends for getting me excited about security. Derek Anderson, thanks
for always being there for me, being a great teammate and dear friend, get-
ting me my first Shmoocon ticket, and giving me a place to crash for the
con. Bill Stackpole, thanks for the great courses, the recommendations for
grad school, and for my love of Turkish coffee.

I n t r o d u c t I o n

If you’ve been in the information tech-
nology industry a while, you’ve probably

noticed that new projects, which in the
past would have been built inside the corpo-

rate network, are now being designed for the cloud.
Organizations are even moving some legacy systems
from on-premises servers to shared hosting providers, and it’s easy to
understand why: by moving to the cloud, they can reduce capital expen-
ditures on server hardware and run lean. In other words, companies
only need to pay for the capacity in use, and they can quickly scale up
resources if a new service becomes an overnight success. Of course, there
are tradeoffs, and the one usually brought up first is security.

xxii Introduction

Application architects and managers commonly speculate about the
security of their solutions. Unfortunately, experience with the cloud—and
developing threat models for it, in particular—is still lacking in many orga-
nizations. That’s what drove me to write this book. We need penetration
testing to validate the assumptions and design decisions that go into these
projects, and although a number of excellent texts on penetration testing
are available, few cover issues unique to cloud-hosted services. My aim in
this book is to provide an overview of all the steps necessary to thoroughly
assess the security of a company’s Microsoft Azure assets, and to suggest
some possible remedies for the attacks I discuss.

About Penetration Testing
Penetration testing (pentesting) is the process where security professionals
(often called white hats) perform the kinds of attacks used by real-world
attackers (often called black hats) at their company’s or client’s request, to
validate if the target organization is:

•	 Performing security reviews for software it designs

•	 Following security best practices for systems and services it deploys

•	 Properly monitoring for and responding to cyberthreats

•	 Keeping systems up to date with patches

Pentesters must understand the tactics, techniques, and procedures (TTPs)
that attackers use, as well as their motivations, to be able to properly emu-
late their behavior and provide a credible assessment. By performing these
assessments throughout a service’s lifecycle, pentesters can help detect vul-
nerabilities and get them remediated before a malicious actor discovers and
exploits them.

In order to accurately mimic black hats, pentesters usually perform a
“live fire” exercise, in which they rely on the kinds of tools, APIs, and scripts
that are associated with illicit activity. I describe how to use such tools in this
book not to enable criminals—they already leverage these techniques—but
to make sure legitimate pentesters are checking for many of the common
threat vectors cloud service customers can expect to encounter. Before intro-
ducing most major topics, I cover some of the best practices that IT profes-
sionals and developers can use to protect their deployments from attackers.
Additionally, after describing a specific threat, I describe potential remedia-
tion steps in “Defender’s Tips.” If this book gets more security professionals
doing thorough assessments of Azure deployments, I’ve succeeded.

What This Book Is About
This book is a guide for performing Azure subscription security assess-
ments. There are several tangentially related topics that we won’t cover.
For example, if you want a guide to attacking the underlying hardware

Introduction xxiii

and software that run Azure (called Azure Fabric), a complete reference to
Azure, or an assessment to other cloud providers, then you may need to
look somewhere else.

This book assumes you have a basic understanding of penetration
testing tools and techniques. If you need a primer on penetration testing,
I highly recommend Georgia Weidman’s Penetration Testing (No Starch
Press, 2014).

W a r n I n g Not all techniques described in other penetration testing guides may be appropri-
ate or permitted when testing cloud environments. In Chapter 1, we look at how
to properly scope your engagement and make sure you are following the cloud pro-
vider’s testing rules.

How This Book Is Organized
I organized this book so it follows the typical workflow of one of my Azure-
focused penetration tests, but you might not need every chapter on every
security project. Not every customer will utilize all of the Azure services
I cover in this book; most will only rely on a subset of the services Azure
offers. Feel free to skip around if a chapter doesn’t apply to your work at
the moment. You can always come back to it another time. I suspect you’ll
eventually run into each of these technologies if you perform enough
assessments.

•	 Chapter 1: Preparation presents an approach to a cloud-focused pen-
etration test, as well as a method for obtaining the proper permissions
to execute an assessment.

•	 Chapter 2: Access Methods covers the various ways a pentester can
gain access to someone else’s Azure subscription.

•	 Chapter 3: Reconnaissance introduces some powerful scripts I’ve devel-
oped to enumerate the services in a given subscription and extract some
additional information from them. It also highlights a few useful third-
party tools, and then moves on to examining specific services in Azure.

•	 Chapter 4: Examining Storage discusses the best ways to gain access to
Azure Storage accounts and how to view their contents.

•	 Chapter 5: Targeting Virtual Machines digs into Azure’s Infra structure
as a Service (IaaS) offering by examining virtual machine (VM) security.

•	 Chapter 6: Investigating Networks describes the security of various
network technologies such as firewalls, virtual private network (VPN)
connections, and other bridging technologies that can link a subscrip-
tion to a corporate network.

•	 Chapter 7: Other Azure Services looks at a few services that are specific
to Azure, such as Key Vault and Azure websites.

•	 Chapter 8: Monitoring, Logs, and Alerts reviews Azure security logging
and monitoring.

xxiv Introduction

Finally, a glossary defines important terms for your reference. Scripts
used in the book are also available for download through the book’s website
at https://nostarch.com/azure/.

What You’ll Need to Run the Tools
Throughout this book, you’ll use a variety of tools to interact with Azure.
Because Azure is a Microsoft product, many of these tools run exclusively on
Windows. You should have either a PC or a VM running Windows whenever
you are performing an Azure penetration test. Windows 7 is the minimum
necessary version, but you should expect updated tools to require newer
versions of Windows. If possible, try to use the most up-to-date version for
best tool compatibility.

1
P r e P a r a t i o n

Planning, kickoff meetings, contracts. A bit
mundane, right? I can think of no penetra-

tion tester who prefers the paperwork part of
the job to the hacking portion. That said, some

preparation work is required to pull off a successful
test and not end up in a world of trouble. Without
proper planning and notifications, your penetration testing could violate
laws or legal agreements, potentially ending your infosec career. I prom-
ise, a small amount of pre-work can be completed quickly and will result
in a better-quality penetration test that will cement your place among the
top tier of security professionals—so read on, friend!

This chapter focuses on the steps needed to properly design and launch
a cloud-focused penetration test. We’ll begin by considering what to include
in the project scope and why scoping is even more important than usual
when a cloud service, such as Azure, is involved. From there, we’ll move on
to obtaining permission and some important rules to follow.

2 Chapter 1

A Hybrid Approach
With more and more corporations placing parts of their IT infrastructure
in the cloud, it has become hard to differentiate internal applications
from public-facing services. As a professional penetration tester working
in a cloud-focused company, I’ve seen a number of requests to assess a
new cloud deployment. Whenever I see such a request, I always push to
increase the scope of the test to cover both the cloud portion and any
related on-premises components, including non-cloud-based data stores,
user accounts for employees working on the cloud projects, employee
workstations, and test environments.

The number of findings I have at the end of a project seems to grow
exponentially when I am permitted to look at a group’s internal, external,
and cloud-based assets—for a few reasons.

Teams Don’t Always Have Cloud Experience
For many IT professionals and software engineers, the cloud is a whole new
world. Sure, a lot of services look and seem similar to what used to run
inside of the corporation, but many behave slightly differently from what
users have grown accustomed to. When these differences are ignored or
misunderstood, it can lead to vulnerabilities that attackers can exploit.

Additionally, the most common security architecture in the 1990s and
2000s was to place everything on a trusted internal network and then put
all the security around the perimeter. This layout looked a lot like a castle
of old—and just like the castle, changing technology has rendered it obso-
lete. Perimeter security doesn’t work when half your services are sitting on
shared servers connected to the internet.

Designing security for a cloud environment is possible but requires
planning, foresight, and experience that many engineers don’t yet have.
Absent this knowledge, it is common to run into all kinds of poorly con-
ceived cloud deployments.

Clouds Are Reasonably Secure by Default
This may seem a bit strange to read in a book about pentesting cloud
services, but it is true: clouds are reasonably secure by default. When a
customer goes to a cloud service provider’s portal and clicks through
the steps to create a virtual machine (VM), the resulting system is usually
locked down. Providers have base images that have firewalls turned on,
antivirus pre-installed, and only one administrator present. As a penetra-
tion tester, this means that if you’re told to limit your scope to one cloud-
hosted server, and you can’t include anything else in the test, you’re likely
to fail. It isn’t until you expand the scope that things get interesting.

For example, perhaps the administrator of that VM reuses their pass-
word all over the place. Maybe they’d click a phishing email. My personal
favorite is when an administrator leaves the password they use to connect

Preparation 3

to the cloud platform sitting in a text file on a network share. The prob-
lem is, if the scope is limited to just that cloud VM, you can’t test any of
these things. An assessment with this kind of limited scope will give those
requesting the test the wrong impression that their cloud assets are impen-
etrable. In reality, a black hat (malicious) attacker would use any of these
methods to gain the desired access.

It’s All Connected
As John Donne reminded us, “No man is an island.” In other words, all of
humanity is interconnected. So too are our corporate networks, cloud ser-
vices, and the internet. Frequently in my testing, I will use a foothold on a
corporate workstation to gain access to a cloud service. Once into the cloud
service, I’ll find something that gives me access to some other corporate
resource I was previously unaware of or unable to crack. Use these links to
your advantage; a real attacker wouldn’t hesitate to do so.

Getting Permission
Once the scope of the assessment has been established, the next step is to
obtain the required permission. After all, without permission, a penetration
test could be considered black hat hacking. I don’t want you to be sued or
fired or go to jail! Therefore, it is important to follow the steps discussed in
this section.

Scope the Assessment
Establishing a thorough scope that defines exactly which systems will be
targeted, which methods will be used, and when the assessment will take
place, and having it approved by all parties, is crucial to any penetration
test. This is important during a conventional, on-premises assessment
because you probably don’t want to waste time targeting a bunch of servers
that are being decommissioned at the end of the week, nor do you want
to take down that one production server with known issues that are being
remediated.

That said, scoping a penetration test with a cloud component is signifi-
cantly more important. Whereas when working on a corporate network you
are likely to be (directly) impacting only your target organization, in the
cloud a poorly planned scope could result in an attack against a different
customer of the same cloud service provider or even the provider itself!
Imagine finding out that the internet protocol (IP) address you thought
belonged to your company’s Azure subscription was actually being used by
the state department of a foreign nation—and you just found and exploited
a vulnerability in one of their systems. That sounds like the beginning of an
international incident I would desperately want to avoid.

4 Chapter 1

For that reason, I suggest forgoing black box testing (where the tester has
very limited or no knowledge of the targets at the beginning of the test).
Instead, insist on a more open approach where you are given at least the
following:

•	 Target subscription identifier(s)

•	 Any IPs or hostnames of the services you are to target

•	 A list of service types in the subscription and to which IPs they map

•	 The goals and desired outcome of the engagement

W a r n i n g Some services will have IP addresses dedicated to just your target, but others may be
shared among multiple customers on the same infrastructure. Doing a broad scan
against one of these IPs would be a definite rule violation.

Another important consideration when developing your scope is orga-
nizational policy. For external testers, this includes the rules of both your
firm and the target organization. A number of large companies have inter-
nal procedures that dictate what is out of bounds in security testing (and
sometimes, what must be included). Violating these mandates can end your
employment, or worse. If you identify a method or service that is forbidden
but that you feel is crucial to an accurate assessment, be sure to bring up your
concerns with management, corporate attorneys, and the policy authors. You
may end up with an exemption; at worst, you can document and explain the
omission in your final report.

Notify Microsoft
Once the scope is complete, you may need permission from the cloud
provider—in our case, Microsoft. Each provider has its own set of rules that
restrict the types of penetration testing permitted and what notification
needs to be given, if any. Microsoft is actually pretty permissive in terms of
the types of penetration testing it allows customers to perform against their
own subscriptions’ resources, but it does appreciate advance notice. This is
another reason why black box testing isn’t practical in the cloud: the Azure
penetration test notification form asks for details of the assessment that
wouldn’t be known ahead of time in a black box test.

W a r n i n g The cloud provider’s rules and requirements are subject to change at any time. Always
check the provider’s website for the latest policies.

As of this writing, submitting the notification form and receiving
confirmation from Microsoft is suggested, though not required. Scans
using a commercial vulnerability scanner such as Qualys’s Vulnerability
Management or Tenable’s Nessus don’t need any formal announcement.
Additionally, you can forgo the form if you are just scanning for the Open
Web Application Security Project’s (OWASP) top-ten web vulnerabilities,
doing fuzzing, or port-scanning a few resources. For all other testing, it is
best to submit notice.

Preparation 5

To submit a notification form, visit https://portal.msrc.microsoft.com/en-us/
engage/pentest and provide the following information:

•	 Email account used to log in to Azure

•	 Subscription ID

•	 Contact information

•	 Test start and end dates

•	 Test description

•	 An acknowledgment of the terms and conditions

Figure 1-1 shows an example of this form. Note that a penetration test
period can be at most six months in length. For longer tests, the form will
need to be resubmitted.

Figure 1-1: The Azure penetration test notification form

The form also requires you to acknowledge and accept the testing
terms and conditions. Microsoft publishes a list of Azure penetration test-
ing rules at https://portal.msrc.microsoft.com/en-us/engage/pentest#pentestterms.
Here are a few key takeaways from these rules:

Test only subscriptions you have explicit permission to test.
Testing will be approved only for subscriptions that you or your com-
pany own, or those that you have explicit permission from the owner
to test. This rule is easy to follow. Just be sure to have a solid scoping
agreement, send the scope of the test to the Azure security team using
the form, and then follow it!

https://portal.msrc.microsoft.com/en-us/engage/pentest
https://portal.msrc.microsoft.com/en-us/engage/pentest

6 Chapter 1

Perform only the testing you described in the form.
It can often be tempting during an assessment to start pulling new
resources into scope as you discover systems or services you didn’t know
about previously (this is commonly referred to as scope creep). However,
that will get you into trouble if you don’t submit an updated notification
form. Similarly, don’t start hammering away with a new tool you just
found; provide notification first.

Do not target Microsoft services or those of other customers.
You were very precise when writing the scoping document and only
included your target’s assets, right? If so, this shouldn’t be an issue.
Just remember that resources are a bit fluid in the cloud: servers may
be shared and IPs can change. When in doubt, confirm a target is
owned by your employer before proceeding, and double-check that
you received acknowledgment from Microsoft.

W a r n i n g For Platform as a Service (PaaS) resources, such as Azure Web Apps, the underlying
server may be hosting websites for multiple customers, and these are therefore off limits
for host-based attacks. This is what makes scoping in the cloud so much more compli-
cated than in on-premises environments.

If you find a flaw in Azure itself, report it to Microsoft.
Microsoft is fairly strict with this last point—you are required to report
any identified Azure Fabric vulnerabilities within 24 hours and must
not disclose them elsewhere for 90 days. There is a bright side, though:
you may be able to submit these findings to the Microsoft Online
Services Bug Bounty program (as long as they meet that program’s
requirements). Finding such a bug means a bit of additional work, but it
can also mean a decent payout, plus public recognition from Microsoft.
To find out more about the Bug Bounty program, see https://technet
.microsoft.com/en-us/security/dn800983/.

Obtain a “Get Out of Jail Free” Card
Borrowing a term from the board game Monopoly, a Get Out of Jail Free card
is a document that proves you have permission to perform the actions
involved in a penetration test. The letter should clearly state who the testers
are, the scope of the activities you are authorized to perform, and the start
and end dates of the test. It should be signed by the penetration test lead, a
high-level manager at the company being assessed, and, if the penetration
tester is external to that organization, a manager at the firm performing
the test. Ideally, the letter should also contain some means to validate that it
is legitimate and not forged, such as contact information for the managers.
(I’ve heard of some testers actually carrying both forged and legitimate
letters, to make sure there are procedures in place to validate what a poten-
tial attacker is saying.)

https://technet.microsoft.com/en-us/security/dn800983/
https://technet.microsoft.com/en-us/security/dn800983/

Preparation 7

The letter can be used by the penetration tester if approached by
corporate security officers or members of a blue team who question the
attacker. It could also be shown to law enforcement officers if needed,
though don’t be confused by the name—if you are being detained, it is
unlikely that the police would release you simply because you have such a
form. Although these letters are most useful when an assessment of physical
security is being performed, I like to have one even when a physical evalu-
ation is not in scope for a test. It provides proof that the actions I’m tak-
ing are authorized, so even if a meteor tragically crushes my management
chain while they are at an offsite meeting, I can show that my hacks last
week weren’t malicious.

If you are looking for a letter to use as a template, penetration tester
extraordinaire and SANS Faculty Fellow Ed Skoudis has one on his website
at http://www.counterhack.net/permission_memo.html. Ed also offers this excel-
lent advice to his students: have your lawyer review your letter (as well as any
contracts and other agreements related to penetration testing). What works
for one organization in one location might not work for you. If you are a
corporate penetration tester, your company’s legal team can help. If you are
an independent contractor, retain counsel to represent you. Hacking (even
with permission) is a risky business.

Be Aware of and Respect Local Laws
Speaking of consulting with lawyers, work with your counsel to determine
if any national, regional, or local laws may restrict the types of activities
you can perform in a penetration test or if special care needs to be taken
for any particular servers or types of data. For example, some regulations
require that customers or patients be notified if their financial or medical
records are accessed improperly. Does access by a penetration tester fall
under these disclosure requirements? It is far better to ask an attorney than
to make an assumption.

Additionally, be concerned with not only the location of the penetra-
tion tester but also that of the target servers, target corporation headquar-
ters and field offices, and, if applicable, the security firm performing the
test. Because laws can vary between all of these entities’ locations, it is
important to be aware of the rules in every place your assessment will
reach. This can be particularly tricky when looking at cloud resources.
After all, what if a server is migrated between regions during your test-
ing? It may not be apparent that anything has happened, but suddenly
your target is in a new country with vastly different laws. Be sure to discuss
this concern with your client when scoping the test to ensure that you are
aware of any possible localities its services may reside in during the assess-
ment window. If a customer wants to test a system that resides in a country
with unfavorable penetration testing regulations, the customer might even
consider migrating the resources to a different region during the test. Just
make sure the configuration of the service isn’t changed during the reloca-
tion, or it could result in incorrect findings.

8 Chapter 1

Summary
In this chapter, I discussed the importance of testing cloud services and
the company network simultaneously to ensure the best coverage. I also dis-
cussed how to notify or get permission from all the relevant parties before
performing a penetration test and how to avoid the criminal justice system.

Next, we’ll get into hacking with methods to gain access to your target’s
Azure subscription.

2
A c c e s s M e t h o d s

Once you have a signed scope agreement
in hand and have notified Microsoft, it’s

time to gain privileged access to the target
subscriptions. This chapter focuses on how to

obtain credentials for an Azure subscription from a
legitimate user or service. We start by looking at the
different mechanisms Azure uses to control access to subscriptions, and
how deployments and permissions are managed. Next, we cover common
places where Azure credentials can be found, and how to capture them.
Finally, we look at two-factor authentication, which may be in use to provide
additional protection for a subscription, and then examine several ways it
can be circumvented.

10 Chapter 2

Azure Deployment Models
Before we begin sniffing out access to a subscription, let’s discuss Azure’s two
authentication and permission models. Azure has both a legacy model, Azure
Service Management (ASM), which was used when Azure was first released, and
a more recent role-based system, Azure Resource Manager (ARM). Because both
models are still in use, it’s important to understand how each model works
and how each can be circumvented.

Although both models can coexist for any given subscription, each
resource in a particular subscription uses only one model. Therefore, if you
authenticate to the legacy portal, you’ll only be able to see “classic” Azure
services. Likewise, running the newer Azure PowerShell commands will
typically give you access only to modern resources.

The upshot is that hacking one user’s account may provide access to
only a fraction of the services running under a subscription. Therefore, it’s
crucial to attempt to compromise both models in any target subscription to
ensure a complete test.

Azure Service Management
Azure Service Management is the original design for deploying and inter-
acting with Azure resources. Sometimes referred to as “Azure Classic,” ASM
is most commonly associated with the older Azure management website,
https://manage.windowsazure.com/.

ASM has many different components, including the following:

•	 An application programming interface (API) to programmatically
manage resources

•	 A collection of PowerShell cmdlets for interrogating and interacting
with services

•	 Username/password authentication support

•	 X.509 certificate-based authentication

•	 A command line interface to control resources

•	 The management website

Each component represents a potential point of entry or an informa-
tion source for penetration testers.

Authorization in ASM

The Azure Service Management model uses a simple authorization
mechanism with only three possible roles: Service Administrator, Account
Administrator, and Co-Administrator. The first two roles are limited to one
each per subscription. Both can be assigned to a single user, if desired.

Access Methods 11

The Service Administrator is the primary management account. It
can make any changes to the subscription’s services and add users as
Co-Administrators. The Account Administrator (also known as Account
Owner) can change billing details and the account assigned to the Service
Administrator role for the subscription but cannot modify services. The
Co-Administrator has the same rights as the Service Administrator, except
for the ability to change the role of another user to Service Administrator.

Because Co-Administrators are essentially equivalent to Service
Administrators, and both have full control over any ASM-created resource,
once you obtain ASM access to an Azure subscription, all ASM resources
are entirely under your control.

A user or service account can authenticate against ASM with a user-
name and password pair or with an X.509 certificate. The owner of a
subscription can log in to the management portal and add users to their
subscription. The accounts they add must be either a Microsoft Account
(MSA), which is an email address registered with Microsoft (formerly
known as a Live ID, and Passport before that), or an account in Azure
Active Directory (AAD). Once added to the subscription, that user simply
connects using their email address and the password they set for their
MSA or their account in AAD.

Certificate-based authentication is unique to ASM and is not imple-
mented (directly) in ARM, discussed later in this chapter. Referred to as
management certificates in ASM, X.509 authentication was originally intended
for services that needed to interact with Azure programmatically. It was
also used for deploying code straight to Azure from Visual Studio and could
be used in place of username/password credentials when using PowerShell
to manage subscriptions.

These are all reasonable use cases, and, theoretically, certificates
should be more secure than passwords for authentication. After all, cer-
tificates can’t be easily divulged by users in phishing attacks, aren’t subject
to guessing or dictionary attacks like passwords are, and almost certainly
have more entropy than a user’s password. Then why would Azure not
carry them forward to the more modern model? There are likely a num-
ber of reasons, but the issue I most often encounter when penetration
testing is certificate manageability.

Certificate Management in ASM

Manageability is the top issue with Azure management certificates. Some
problems with management certificates include determining where a cer-
tificate is used, certificate name reuse, lack of revocation lists, improper
storage, and nonrepudiation.

Figure 2-1 shows Azure’s management certificate settings page, which
includes details about each of the certificates added to the subscription and
allows administrators to add new certificates or remove existing ones.

12 Chapter 2

�

�

Figure 2-1: Azure management certificate settings

Let’s look at some of the difficulties involved in managing these certifi-
cates, which can lead to security issues.

Tracking Certificates Across Subscriptions
When a certificate is added to a subscription, the Azure portal doesn’t
tell you who created the certificate or who uploaded it. (Note the lack
of an owner or creator column in Figure 2-1.) To further complicate
things, there is no way to look up all the subscriptions where a given
certificate is authorized. This means that if a cyber defense team is
alerted to a particular certificate having been compromised, they
won’t necessarily know which subscriptions are affected.

Name Reuse
Poorly named certificates are another problem for administrators trying
to maintain a subscription. Because certificates are automatically gener-
ated by various tools (Visual Studio, PowerShell, and even the Azure
portal itself), different certificates frequently have the same names. For
example, Figure 2-1 shows multiple Visual Studio–generated certificates
that use the same name—“Visual Studio Ultimate” —distinguished
only by their thumbprints .

Because each Azure subscription can have up to 100 management
certificates, name reuse can quickly make it difficult to determine who

Access Methods 13

owns which certificate. If an administrator is fired, how are the remain-
ing administrators to know which certificate(s) must be deleted?

Revocation
Unlike most systems that use X.509 certificates, Azure doesn’t imple-
ment Certificate Revocation Lists (CRLs) for management certificates.
CRLs document when a certificate is no longer trusted in a central loca-
tion that services can check. For example, if CRLs were implemented,
an administrator could publish an update stating “No longer trust
certificate X,” and all services permitting that certificate would block
it automatically. Without CRLs, a compromised certificate must be
deleted from each subscription manually. However, because there’s no
way to determine which subscriptions can be accessed with a particu-
lar certificate, it’s common to find bad certificates inadvertently left in
some subscriptions.

Storage
Another critical issue with management certificates has to do with
proper, secure storage. Because certificates are frequently generated
by tools such as Visual Studio, the location of these files is often pre-
dictable. In fact, they can routinely be found in source code reposito-
ries and users’ Downloads folders. They may even be exported directly
from the certificate store on an administrator’s computer.

Nonrepudiation
Nonrepudiation describes the ability of a system to definitively state that
an action was performed by a given user, such that the user cannot
claim that someone else performed the action. Nonrepudiation is most
straightforward with usernames and passwords, and it’s well established
that passwords should not be shared. Unfortunately, users often don’t
respect certificates the way they do passwords, and it’s common for the
members of a team to all use one shared certificate to access numerous
subscriptions.

These concerns make consistent, thorough auditing and cleanup of
management certificates difficult. Orphaned management certificates can
leave a subscription vulnerable, and use of a forgotten certificate may well
go unnoticed for an extended period.

Azure Resource Manager
Several years following the initial release of Azure, Microsoft realized it
needed to improve several aspects of Azure management. Rather than
integrate the changes into the existing ASM management portal and APIs,
it launched Azure Resource Manager as a replacement.

ARM’s most obvious change is the portal available at https://portal.azure
.com/, but that’s only the most visible part of the model. By order of signifi-
cance, notable changes introduced in ARM include the following:

•	 Role-based access control

•	 Removal of management certificates

https://portal.azure.com/
https://portal.azure.com/

14 Chapter 2

•	 Addition of service principals

•	 Ability to manage a group of resources as one unit

•	 New PowerShell cmdlets

•	 Templates to quickly deploy complex services

Role-based access control (RBAC) brought the biggest change for penetra-
tion testers. Unlike ASM, with its limited set of roles, ARM offers numerous
roles that can be assigned to users both at a subscription level and on a per-
resource basis.

The most common roles are Owner (full control), Contributor (all rights
except the ability to change permissions), Reader (read-only control), and
User Access Administrator (ability to edit permissions only). Other service-
specific roles such as SQL DB Contributor and Website Contributor permit
the Owner to limit database administrators to only SQL server access while
allowing web developers to modify websites only. When compromising a
subscription, you’ll ideally want to target users who are Owners for the
entire subscription.

Another important change was the addition of service principals. These
accounts are similar to service accounts in an on-premises server—like
the Apache daemon and Internet Information Services (IIS) accounts that
are used to run web servers. Service principals allow an application to run
under an account not associated with a regular user and still access other
cloud resources. For example, a company’s Azure website may need to
access Azure Active Directory (AAD) to look up employee information.
The site needs some account to log in to AAD, but the developer certainly
doesn’t want the site to use their user credentials to perform those lookups.
This is where a service principal is needed.

Because service principals are used for software, scripts, and automa-
tion, these accounts can use either passwords (automatically generated and
referred to as a “Client Secret”) or certificates to authenticate, though their
configuration and use differ from ASM management certificates. Following
the principle of least privilege, service principals are often assigned only
enough access through RBAC to perform specific tasks so that compro-
mising one will only provide access to a small subset of resources within a
subscription.

de f e nde r’s t ip

Because ARM offers several security advantages over ASM, you should
migrate any existing ASM-based services to ARM. To do so, download
the tools MigAz and ASM2ARM from GitHub. Microsoft also has several
articles on ARM migration posted at https://docs.microsoft.com/en-us/azure/
virtual-machines/windows/migration-classic-resource-manager-overview/.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migration-classic-resource-manager-overview/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migration-classic-resource-manager-overview/

Access Methods 15

Obtaining Credentials
As penetration testers, we must gather credentials to demonstrate what
a real attacker might do with access to a client’s resources. Our target
account would be one that provides administrator access to a target’s ASM
resources, has Owner permissions for all ARM resources in the subscrip-
tion, and has two-factor authentication (2FA) disabled. Such an account
would be able to create, examine, change, or delete any service within the
subscription and log in without responding to a phone prompt. Finding
such an account on Azure would be equivalent to finding a root account in
Linux that uses a default password and that can log in remotely.

The first step in finding our target account would be to locate a ser-
vice account that uses a username and password to log in and that is a
Co-Administrator of the target subscription in ASM. Service accounts are
ideal because they rarely have 2FA enabled, infrequently change their
password, and often have passwords left in source code. Failing that,
the account of a human administrative user (such as a manager or lead
developer) would do well, especially because they are likely to have full
control over all resources, even if they have 2FA enabled. As a last resort,
consider management certificates. Although they won’t provide access
to ARM resources, they are usually easy to come by and are infrequently
changed or removed.

By investigating credentials, you will be able to determine if your cus-
tomer is properly protecting these crucial secrets and, if not, provide guid-
ance for how they can secure them. Let’s look at how to try to obtain these
credentials.

Mimikatz
Obtaining credentials directly from a user’s operating system has to be one
of my favorite pentest methods. The concept is simple enough: even when
the system is unplugged from the network, an operating system needs to
keep track of a user’s password for tasks such as validating the password
and forwarding the password on to other systems so the user doesn’t have
to retype it, such as when connecting to a file server.

Tools to grab passwords or password hashes from various places in the
operating system have been available for years. Early examples like Cain &
Abel could extract them from the Windows Security Account Manager
(SAM) file, and PwDump has had numerous iterations with different
methods. However, the release of Benjamin Delpy’s Mimikatz changed
the game by allowing password theft straight from a system’s memory.

Using Mimikatz
The primary feature of Mimikatz works by identifying the running Local
Security Authority Subsystem Service (LSASS) on a Windows system, attach-
ing to it, and siphoning secrets out of its memory. Although Mimikatz can
grab numerous kinds of secrets, we’ll look only at user passwords.

16 Chapter 2

When using Mimikatz, you first need to obtain administrative access to
a system used by the target administrator. In a domain environment, this
usually isn’t difficult. For example, you might phish an administrator of a
terminal server that is also used by the target user and run Mimikatz there,
or you could social engineer a helpdesk employee in a security group with
administrative rights to all workstations on the domain. All you need is an
administrator account on any system that has recently been serviced by the
helpdesk, and you can execute Mimikatz on that system to get the helpdesk
password.

Once you have administrative access to a system, it’s time to download
Mimikatz from https://github.com/gentilkiwi/mimikatz/. If the download is
flagged by antivirus, it’s easy enough to run a version that has been con-
verted to a PowerShell script available as part of the PowerSploit framework
from https://github.com/PowerShellMafia/PowerSploit/. You could also retrieve
the Mimikatz source code, make some small modifications, and recompile
it (and rename the binary) in order to bypass any signature-based antivirus
detections. (The Mimikatz GitHub page has detailed directions for how to
do this.)

Now launch an elevated command prompt on the target system and
execute the 32- or 64-bit version of mimikatz.exe, depending on the operat-
ing system architecture. (If you’re unsure of the architecture, run wmic OS
get OSArchitecture.)

Capturing Credentials
To capture credentials, Mimikatz needs debugging rights. It uses this
privilege to be able to read memory in LSASS. To give it this access, enter
privilege::debug at the Mimikatz prompt, as shown here:

mimikatz # privilege::debug
Privilege '20' OK

Next, issue the sekurlsa::logonpasswords command to dump all the pass-
words and hashes Mimikatz can find, as shown in Listing 2-1.

mimikatz # sekurlsa::logonpasswords
Authentication Id : 0 ; 249835 (00000000:0003cfeb)
Session : Interactive from 1
User Name : Administrator
Domain : Corporation
Logon Server : Workstation
Logon Time : 11/1/2016 11:09:59 PM
SID : S-1-5-21-2220999950-2000000220-1111191198-1001
 msv :
 [00000003] Primary
 * Username : TargetUser
 * Domain : Corporation

 * NTLM : 92937945b518814341de3f726500d4ff
 * SHA1 : 02726d40f378e716981c4321d60ba3a325ed6a4c

Access Methods 17

 [00010000] CredentialKeys
 * NTLM : 92937945b518814341de3f726500d4ff
 * SHA1 : 02726d40f378e716981c4321d60ba3a325ed6a4c

 tspkg :
 * Username : TargetUser
 * Domain : Corporation
 * Password : Pa$$w0rd
 wdigest :
 * Username : TargetUser
 * Domain : Corporation
 * Password : Pa$$w0rd
 kerberos :
 * Username : TargetUser
 * Domain : Corporation
 * Password : (null)

Listing 2-1: Retrieving passwords with Mimikatz

As you can see in the output, Mimikatz was able to find the NTLM and
SHA1 hashes for TargetUser’s password . It was also able to find the plain-
text, non-hashed version of the password in both the tspkg and wdigest exten-
sions present in LSASS .

Factors Affecting Success
Several factors impact Mimikatz’s ability to retrieve passwords. Most impor-
tant is what operating system the user is running. Although Mimikatz
supports everything from Windows 2000 through Windows 10, newer ver-
sions of Windows have improved credential storage. For example, it was
common to get plaintext passwords from Windows Vista and Windows
Server 2008, even after a user had logged off (as long as the system hadn’t
been rebooted). Although it’s still possible to get hashes from Windows 10,
plaintext passwords are hit-or-miss and are only possible to retrieve while
the user’s session is active. Additionally, the Credential Guard feature in
Windows 10 Enterprise, when enabled, moves these secrets into an isolated
container that is better protected from hacking tools.

Mimikatz’s ability to capture credentials is also contingent on how the
target system is configured and on what applications are installed. Certain
applications and Windows features rely on having a copy of users’ creden-
tials so that users won’t be prompted to re-enter their password each time a
remote connection is established. With each new revision, Windows elimi-
nates some of these dependencies for plaintext passwords, but Microsoft
can’t control what third-party software does, so it may be a while before all
credentials are cleaned from memory.

Mimikatz relies on the fact that certain locations in Windows are known
to hold credentials, and the program evolves as Windows evolves. With that
in mind, if your target is running some unusual build of Windows (such as a
technical preview copy), Mimikatz probably won’t be able to determine where
credentials are held in memory.

18 Chapter 2

de f e nde r’s t ip

Using Credential Guard is one of the best ways to protect user credentials from
hacking tools such as Mimikatz, though it isn’t available on operating systems
before Windows 10 or Windows Server 2016. For an attacker, it is one of
the most frustrating security features to encounter. You can learn more about
this Windows feature at https://technet.microsoft.com/en-us/itpro/windows/
keep-secure/credential-guard/.

Best Practices: Usernames and Passwords
In spite of passwords being in use for decades, weak password selection is
still a major factor in security breaches. Although it can be difficult to get
an entire user population to all choose good passwords, administrators and
corporate policy creators can help support their users in making good pass-
word choices by eliminating rules that lead to poor password construction.

For example, conventional wisdom stated that companies should
enforce short password lifetimes, so users had to choose new passwords
every few months. Although this does help prevent password hash cracking
for lengthy passwords, it also means users are expected to come up with a
novel, complex password that they can remember, one that isn’t based on
a past password, multiple times a year. In practice, this often leads to users
selecting passwords that just barely meet corporate standards for length
and that contain predictable elements such as dictionary words or dates.

Instead, the 2017 Digital Identity Guidelines from the U.S. National
Institute of Standards and Technology (NIST) now suggest not enforcing
frequent password changes, in order to allow users to create a very strong
password and keep it for an extended period. The guidance suggests only
forcing a change if the credential is determined to have been compromised.

Companies can also encourage users to use a suitable password man-
ager to generate and store credentials. These utilities help ensure that users
select a strong, random password for each system, service, or website they
use. This greatly improves security, because password reuse across multiple
sites means that if any one site is breached, the security of any other service
where a user has chosen the same password is now also at risk.

Additionally, even strong passwords can still be obtained if a user is sus-
ceptible to phishing (see “Phishing” on page 19 for more on this topic).
One of the most effective ways to stop phishing attacks is to enable multi-
factor authentication on your services, such as requiring the user to enter
a code received on their mobile device in addition to their password. This
greatly increases the complexity of an attack for an adversary.

Finally, we know that web-facing services that use password-based
authentication are frequently the target of password-guessing attacks, as
described in “Guessing Passwords” on page 21. To help reduce this risk,

https://technet.microsoft.com/en-us/itpro/windows/keep-secure/credential-guard/
https://technet.microsoft.com/en-us/itpro/windows/keep-secure/credential-guard/

Access Methods 19

make sure that any administrative accounts for these services use unique
usernames, as attackers will often try just a few usernames, such as adminis-
trator, admin, and root.

Usernames and Passwords
When Mimikatz is not an option, you’ll need another way to grab usernames
and passwords. This can be accomplished by searching unencrypted docu-
ments, phishing, finding saved authentication tokens, or using educated
guesses. Each method has its advantages and disadvantages.

Searching Unencrypted Documents
Corporate penetration testers often find a surprising number of passwords
just lying around, readily available for a sleuthing attacker. Although the
cliché password on a sticky note attached to a monitor is sadly still an issue
in some companies, most penetration testers can’t go office-to-office look-
ing for credentials. Fortunately for the penetration tester, many passwords
are kept in unencrypted files that are easily accessed remotely.

If your target is a service account, you will often find the account’s pass-
word in source code and configuration (.config) files used by that service.
Passwords may also appear in design documents on a team portal or file
share.

When targeting a human in search of a username and password, look
for passwords in a text file or spreadsheet, often on the user’s desktop or in
their Documents directory. (You will of course need access to that user’s PC
or network.) As you surely know, browsers offer to save passwords on the
user’s behalf, and these are usually trivial to recover once on the system.

Phishing
One surprisingly successful way to collect passwords is by phishing—or
more accurately, spear phishing—for them. When phishing, you email a wide
range of users to try to trick them into taking some action, such as divulg-
ing their username and password by convincing them to visit a malicious
site or getting them to install malware.

Spear phishing is simply a more targeted version of phishing: you email
a very specific group using language that looks familiar to the target, and
make it appear as though the email came from a legitimate or expected
address. For example, whereas a typical phishing email might contain
a link to a supposed greeting card and is sent to thousands of users, a
spear-phishing email might look like it comes from the HR department
and is sent to only a dozen people with a request to update their contact
information.

In my experience as a security professional, I find many spear-phishing
attacks mimic the type of email a user generally expects, including the
style and language of some leaked corporate emails. Often the emails
come from a legitimate-sounding address and contain a link to a plausible

20 Chapter 2

URL. For example, one might register a domain name that’s very close to
that of the target corporation’s real address—perhaps using .net instead of
.com or a character replacement, such as swapping an uppercase I with a
lowercase l.

The most successful phishing attacks play on people’s hopes and fears.
Emails offering some reward, such as free event tickets or gift cards, or
threatening to take away some employee perk or suspend the user’s account
almost always get a quick response.

Phishing emails contain a link designed to entice the user into click-
ing it, directing the user to a web page where they’re prompted to sign in.
Successful destination pages look just like the real one used by the target
user’s company. The phishing page will save the password to a secure log or
database that the attacker controls and then redirect the user somewhere
plausible so as not to arouse suspicion, such as to a real logon page, a page
that says the promotion mentioned in the email has expired, or a page that
says that the company has reconsidered and will not be charging employees
for use of the photocopier.

W A r n i n g Be extremely careful if setting up credential-capturing systems. You should follow
all security best practices for your phishing site and database, including using encryp-
tion in transit, encryption at rest, and strong, multi-factor authentication to access
the secrets. Your site should be code-reviewed for flaws, and the underlying services/
system should be fully patched. Failing to take these precautions could put employee
credentials at a much greater risk, violate your target company’s policies, and lead to
a real compromise.

However, phishing isn’t without its downsides. For one thing, it can
only be used to target users, not service accounts. Also, it only takes one
user to recognize the email as a phishing attempt and report it before the
target organization’s security team swoops in and quarantines the email,
blacklists the phishing website, and resets the passwords for any accounts
you’ve already obtained.

Looking for Saved ARM Profile Tokens
JavaScript Object Notation (JSON) files are another place that is capable
of storing credentials. Because developers often need to use different
accounts when accessing ARM resources (perhaps for automation or test-
ing purposes), Azure provides an ARM PowerShell cmdlet to save an Azure
credential as a profile : Save-AzureRmProfile. These profiles are just JSON files,
and the developer can choose to store them wherever they like. Inside these
JSON files is a token, which is a stored representation of the saved creden-
tial. To use it, simply run the Select-AzureRmProfile cmdlet and specify the
JSON file using the -Path parameter.

Finding these stored profiles can be a little tricky because they don’t
have a unique extension (in fact, they could have any extension, though

Access Methods 21

most users choose .json because it is used in the documentation). However,
you should be able to locate these profiles by performing a search for files
containing keywords used in the profiles. Search for a term like TokenCache,
which is the variable in the file that stores the actual credential. If that
turns up too many false positives on your target user’s system, try Tenant,
PublishSettingsFileUrl, and ManagementPortalUrl. These keywords should be
sufficient to locate any saved profiles with minimal false positives.

Guessing Passwords
One final way to obtain an account password is simply to guess. Uneducated
guessing is not likely to be fruitful, but combined with a bit of reasoning
and research, guessing can bear fruit.

When trying to guess a password, first try to find the organization’s
password policy. If all passwords must be at least nine characters long and
include letters and numbers, simply trying someone’s birthday is sure to
fail. Additionally, knowing if there is an account lockout policy is crucial
because it determines how many guesses can be made against a single
account before it is locked, thus alerting the user to the attempts.

Next, try to collect information about the target user. The names of a
spouse, children, and pets can be very useful, as can birth dates, anniversa-
ries, and graduations. Even knowing how often an organization mandates
a password change can be useful. Users who must come up with a new pass-
word every 30 days use the names of the month (or its numeric equivalent)
in their passwords with disturbing frequency.

When guessing, try to find some public endpoint that will validate the
user’s credentials and report the result quickly. Corporate webmail sites and
virtual private network (VPN) endpoints might be good options. A site that
does not rate-limit logon attempts and does not lock out user accounts is
useful to attackers.

de f e nde r’s t ip

Implementing automatic account lockouts after a certain number of failed logon
attempts is a popular way to address password guessing attempts; however,
they can have the unintended consequence of preventing the legitimate account
holder from accessing network resources until their account is unblocked. For
this reason, rate limiting logon attempts may be a better option, either based
on the IP address of the source machine attempting the logon or based on the
account being tested. Regardless of the approach, defending against this type
of attack should be a priority for system administrators. Defense teams should
also set up monitoring on applicable endpoints to improve their awareness of
attacks taking place.

22 Chapter 2

In response to account lockout policies, password spraying has become
a common technique used by attackers. Whereas traditional brute-force
attempts try many different passwords against only a handful of accounts,
password spraying tries just a handful of common passwords against many
different accounts: this identifies all the accounts that share the same weak
passwords. Even if the resulting accounts don’t have access to the target
resources, they may serve as a springboard into the environment to target
other systems. This is a good method to employ as a pentester, so you can
demonstrate an increasingly common real-world attack as well as measure
the target organization’s ability to detect and respond to it.

Hydra by The Hacker’s Choice (THC) is a particularly useful tool
for password guessing. You can find it at https://github.com/vanhauser-thc/
thc-hydra/ or https://www.thc.org/thc-hydra/.

Best Practices: Management Certificates
Management certificates are intended to programmatically manage classic,
ASM-based resources. In ARM, which is the new and recommended way
to deploy Azure resources, service principals have replaced management
certificates. Service principals offer a number of benefits over management
certificates—most notably the ability to specify granular permissions, reduc-
ing the damage that can be caused by a compromised account. Wherever
possible, it makes sense to move away from management certificates and to
use service principals.

However, if you must maintain management certificates for existing
services, there are several steps you can take to protect them. These include
tracking where management certificates are used and who owns them, stor-
ing them securely, using the certificates exclusively for Azure management,
and, when possible, moving away from management certificates.

As I mentioned earlier, the difficulty of managing management certifi-
cates is one of their biggest drawbacks. I’d suggest performing a detailed
inventory of any certificates that exist in all of your subscriptions, including
their name, thumbprint, which subscription(s) they are present in, and, if
you can, who created them or uses them and their purpose. Then make it
a policy that any new management certificates must be logged before being
added, and failure to do so will result in their removal. Once this inventory
is in place, perform periodic audits to look for changes to the certificate list
in all of your subscriptions and remove any that are no longer used.

Additionally, to help track certificate usage, I suggest using unique
names for all certificates that are not automatically generated. You might
even consider removing all automatically generated certificates during each
audit—just be sure developers know that this is policy, so they don’t expect
them to persist.

Another concern is properly securing management certificates. Never
check certificates into source control, as that makes it too easy for them to
be overshared. Instead, treat them like other credentials and place them in

https://github.com/vanhauser-thc/thc-hydra/
https://github.com/vanhauser-thc/thc-hydra/

Access Methods 23

a secure location. Don’t even temporarily store private keys on improperly
secured workstations or drives. Also, be sure to use strong passwords on the
.pfx files containing the management certificates’ private keys.

One other common mistake is the use of certificates for multiple pur-
poses, such as using the same SSL/TLS certificate both to secure website
traffic and for managing the subscription hosting the site. Don’t do this!
Reuse of certificates in this way is not only confusing but also means that
if a certificate is compromised in one place, every system using it is vulner-
able. Azure management certificates don’t need to be fancy, expensive, pub-
licly trusted certificates; a free, self-signed certificate works just fine.

If possible, private keys or key pairs should be generated on the system
that will ultimately use the private key. If an administrator routinely gener-
ates key pairs for production systems on their own workstation, those pri-
vate keys are unnecessarily exposed on a single system, which will thereby
become a high-value target.

Finding Management Certificates
Recall from earlier in this chapter that in addition to authenticating users
by username and password, ASM also accepts certificates. In this section,
we look at how to use certificates to gain access to management certificates
in Publish Settings files, the certificate store, configuration files, and Cloud
Service Package files.

Keep in mind that Azure uses asymmetric X.509 certificates, which
means that each certificate has a public and private key. It is important to
obtain the private key portion of the certificate, as this is the component
required for authentication.

Although certificates can have a number of file extensions (when not
embedded in some other file, as discussed in the next section), the two
most common extensions on Windows are .pfx and .cer. Typically, .cer files
will only contain the public key, whereas .pfx files will also contain the
private key. For this reason, attackers often search a target machine’s file
system for *.pfx files.

If you find a .pfx file that is password protected, look for text files in
the same directory. Users often save the password in a plain-text file in the
same directory as the certificate itself!

Publish Settings Files
Publish Settings files are XML documents that contain details about an Azure
subscription, including the subscription’s name, ID, and, most importantly,
a base64-encoded management certificate. These files can easily be identi-
fied by their somewhat unwieldy extension, .publishsettings.

Publish Settings files are designed to make it easy for developers to
deploy projects to Azure. For example, after creating an Azure website
in Visual Studio, the Publishing Wizard accepts a Publish Settings file to

24 Chapter 2

authenticate to Azure and push the solution to the cloud. Because these
files are downloaded from the Azure management portal and are often
used in Visual Studio, they can usually be found in a user’s Downloads direc-
tory or saved with Visual Studio project files.

Once you have a Publish Settings file, open it in a text editor, copy
everything between the quotation marks in the ManagementCertificate sec-
tion, paste the contents into a new document, and save it with a .pfx exten-
sion. Note that there is no password for this .pfx file, so if you are prompted
for a password when using it, simply click Next or OK.

Reused Certificates
Reused certificates are another surprising source of management certifi-
cates. Some IT professionals think that certificates are costly or difficult to
create, so they simply reuse the same certificate everywhere. (Whereas cer-
tificates used for public-facing websites should come from a trusted public
certificate authority and may be costly, self-signed certificates work just fine
for Azure management—and they’re free.) As a result, you may find that
the private key for the certificate used for SSL/TLS on a company’s website
is also used for the company’s Azure subscription.

Attackers can’t retrieve the private key portion of a website’s certificate
simply by visiting the site; instead, the web server must be compromised
and the certificate store raided. Once that is accomplished, the attacker
needs to extract the certificate from the server. Sadly for the pentester, most
servers mark their certificates as “non-exportable,” which prevents them
from being copied directly; however, Mimikatz is able to retrieve protected
certificates.

To extract certificates from a server, run Mimikatz from an administra-
tive command prompt and then issue these commands:

mimikatz # crypto::capi
mimikatz # privilege::debug
mimikatz # crypto::cng
mimikatz # crypto::certificates /systemstore:local_machine /store:my /export

The first three commands give Mimikatz access to the certificates.
The final command exports all certificates from the local machine store’s
personal certificate folder and saves them to the current working direc-
tory as both .pfx and .cer files. (For the names of other possible store
and systemstore values, see https://github.com/gentilkiwi/mimikatz/wiki/
module-~-crypto/.)

Configuration Files
Management certificates are typically used either to deploy a service or for an
application to interact with a resource once it is running in Azure. Although
Publish Settings files take care of service deployments, configuration files

https://github.com/gentilkiwi/mimikatz/wiki/module-~-crypto/
https://github.com/gentilkiwi/mimikatz/wiki/module-~-crypto/

Access Methods 25

can be used by applications connecting to Azure services. Configuration files
typically have a .config extension and are most often named app.config (for
applications) or web.config (for web services). The purpose of a configura-
tion file is to move the details of a service outside of an application’s code
and keep it in a user-editable XML file. This way, if the service moves or
is renamed, the application doesn’t have to be recompiled. For example,
instead of hard-coding the name and connection details of a SQL server
into an application, you can save that information in XML format. The
flaw in this approach from a security standpoint occurs when develop-
ers include both server addresses and unencrypted credentials in these
configuration files.

The most commonly found credentials are connection strings for Azure
SQL databases, including usernames and passwords in plaintext. The next
most common are access keys used to interact with Azure Storage accounts
because applications often need to read/write data to storage. (We’ll cover
Azure Storage more in Chapter 4.)

Less commonly found is the type of credential we’re looking for: a
base64-encoded management certificate. Because developers can use any
name for variables in a configuration file, management certificates won’t
always be obvious, but they’re easy enough to spot because they have cer-
tain characteristics. They’re usually the longest string in a configuration file
(a little over 3,000 characters), they begin with a capital M, often end with
one or two equals signs, and contain only base64 characters (A–Z, a–z, 0–9,
+, /, and =).

Once you’ve found a certificate, copy it out of the file and save it with a
.pfx extension. Because certificates can be used for non-Azure-related pur-
poses, look through the configuration file for a subscription ID. If you find
a subscription ID, the certificate is almost certainly used for Azure manage-
ment, and you know at least one subscription where the certificate should
be valid.

Cloud Service Packages
When a developer creates an application to deploy to Azure, Visual Studio
packages up the entire deployment into a Cloud Service Package (.cspkg) file.
These files are simply ZIP files with specific elements, including compiled
code, configuration files, manifests, and dependencies. Although some of
these files will have unusual extensions, almost every file in the package will
be a ZIP file, an XML file, a plaintext file, or a compiled binary.

Whenever you encounter a Cloud Service Package, review its contents
and try opening nested files in your favorite text editor and file compres-
sion tool. Because services in Azure often invoke other services in Azure
(for example, an Azure website that gets content from Azure Storage and
Azure SQL), you will sometimes find management certificates or other cre-
dentials embedded within the .cspkg file.

26 Chapter 2

Best Practices: Protecting Privileged Accounts
Privileged accounts need to be tightly protected to prevent an attacker
from taking control of the systems they administer. Some very effective
ways to do this include the use of separate credentials, credential vaulting,
Privileged Access Workstations, and just-in-time administration.

The most important step in protecting these credentials is to separate
them from normal business tasks like checking email and browsing the
web. Instead of granting a user’s standard account administrative rights
to sensitive systems (or high-powered roles in Azure like Owner), create a
separate account for the user that they use only for service administration.
Additionally, ensure this account requires strong authentication, mean-
ing a strong password with multi-factor authentication enabled—or even
 better, smartcard-based authentication. If the account does use a password,
consider requiring the use of a secure password manager or vault to ensure
that the password is long, frequently changed, and auditable.

Even with these protections in place, such an account can still be com-
promised if it is used from the same system where a user is browsing the web
or opening documents from their standard account. Instead, the use of a
Privileged Access Workstation (PAW) is a great way to reduce the sensitive
account’s exposure by focusing on protecting the client used by an admin-
istrator. A PAW is a dedicated, hardened workstation that an administrator
uses for accessing high-value systems, using an account they don’t use on
other systems.

The PAW should be accessible only from the privileged account; the
user should not be a local administrator. Additionally, the PAW should
enforce predefined software and website whitelists, so only approved
apps and sites can be accessed on the device (for example, the Azure
portal). You can learn more about PAWs at https://docs.microsoft.com/en-us/
windows-server/identity/securing-privileged-access/privileged-access-workstations/.

To further limit the risk of one of these accounts being breached,
consider using just-in-time (JIT) administration or just enough admin (JEA).
With JIT, accounts are present in highly privileged roles only when the
user needs to perform an administrative task. Similarly, with JEA, the
exact rights and responsibilities of each administrator are closely exam-
ined, and only the smallest set of permissions needed for a user to per-
form their work is granted. Azure supports JIT by using the Privileged
Identity Management (PIM) feature. For more information about how
to configure it, see https://docs.microsoft.com/en-us/azure/active-directory/
active-directory-privileged-identity-management-configure/.

Encountering Two-Factor Authentication
For increased security against credential theft, some companies turn to
two-factor authentication (2FA), sometimes referred to as multi-factor authen-
tication (MFA). When signing in, the user must submit not only some-
thing they know (a password) but also proof of something they have in

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-privileged-identity-management-configure/
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-privileged-identity-management-configure/
https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-access/privileged-access-workstations/
https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-access/privileged-access-workstations/

Access Methods 27

their possession (such as a phone or smartcard) or something they are
(biometric validation).

Two-factor authentication is natively supported by Azure and can be
enabled by an administrator using the settings shown in Figure 2-2, which
can be found in the classic portal by selecting the Active Directory service,
clicking Multi-Factor Auth Providers, and then clicking Manage.

Figure 2-2: Azure multi-factor authentication settings

If MFA is enabled, you’ll likely encounter a prompt for a second factor
when authenticating with a username and password—typically one of the
following:

•	 A code from an SMS text message sent to that user’s registered mobile
phone

•	 A code from a one-time-code-generating app such as Microsoft
Authenticator

•	 The user’s smartcard and its associated personal identification
number (PIN)

•	 An acknowledgment to a notification on the user’s smartphone from an
enrolled mobile app

•	 A phone call, which may provide a code or request a confirmation
or PIN

Assuming you don’t have the user’s mobile device, this can be a signifi-
cant hurdle to overcome. Luckily, there are several ways to get around this
obstacle.

28 Chapter 2

Using Certificate Authentication
One straightforward way to avoid 2FA is to authenticate to Azure using a
management certificate instead of a username and password. Because cer-
tificate authentication is often used in automation, without a user present
to enter a token, certificates are typically exempt from 2FA requirements.
Although this may be a great option, certificates are limited to ASM access,
so you may need a different bypass method to get to ARM resources.

Using a Service Principal or a Service Account
Another way to try to bypass MFA would be to obtain the credentials for a
service account that has access to the target subscription. Service accounts
are typically used either by a service to complete actions programmatically
in Azure or with an account shared by a group of people at a company. In
either case, 2FA is unlikely because services don’t have phones and groups
can’t easily share 2FA tokens. This means service accounts are usually
exempt from using a second factor.

Accessing Cookies
Notice in Azure’s multi-factor authentication settings page at the bottom
of Figure 2-2 the option for users to flag devices as trusted for a period of
time. This option is there to quell a common complaint of two-factor
authentication: that entering a code or inserting a smartcard is tedious,
especially on a system that a user logs in from frequently. With this setting
enabled, a user may check a box during authentication to stop the system
from re-prompting for credentials or 2FA tokens for a certain amount of
time. This feature works by saving a cookie with a token in the user’s web
browser after the user was successfully authenticated with 2FA. The token
is a long, encrypted string that gives the bearer of the cookie immedi-
ate access to Azure. Note that this approach isn’t unique to Azure, but is
 common across many sites.

Because cookie storage is usually not particularly secure, all a pentester
needs to do to grab that cookie is to gain access to the user’s workstation,
copy the cookie, and then place it in the browser on their own system.
Typically, these tokens are not prevented from working on a different host,
so they can be used anywhere once retrieved.

The method to obtain a cookie varies based on the target user’s choice of
web browser and the type of access the pentester has to the workstation. If the
pentester can run code in the security context of the user, exporting cookies
can be as simple as using a suitable post-exploitation framework. Don’t forget
to check if the user has installed a cookie manager—like a real attacker, you
might find that all the tools you need are already installed. Some browsers also
store cookies without encryption on the file system, making them even easier
to retrieve.

Access Methods 29

de f e nde r’s t ip

Many sites rely on cookies containing encrypted tokens to validate a user’s
requests after they’ve authenticated (and completed 2FA where applicable).
Without these, a user would be re-prompted for credentials far too frequently.
Since these cookies contain everything needed to make requests as the user
to whom they were issued, they shouldn’t be left lying around. To prevent
cookies from being stolen for critical sites like the Azure Portal, users should
sign out as soon as they are finished with their administrative work, and also
clear their cookies. (In this case, I’d suggest clearing cookies for at least the
microsoftonline.com and azure.com domains.) Alternatively, “private” modes
in most web browsers can be used, as they ensure these cookies don’t persist
after the browser is closed.

Proxying Traffic Through the User’s Browser
An alternative to using cookies is to route web requests through a target
user’s web browser so that these requests use the user’s session tokens and
appear to come from their PC. The logistics of this method can be difficult:
on the user’s system, you need to get a stealthy, malicious application run-
ning that can listen to requests from your system, route them through the
user’s browser, and then obtain the responses and pass them back to you.
Fortunately, this particular scenario is built into Cobalt Strike, a hacking
command-and-control tool.

To create the proxy, you’ll need to have a Cobalt Strike server run-
ning and a Cobalt Strike payload package, known as a Beacon, deployed
to the user’s system. From there, use the Browser Pivot command to create
a proxy.

Now, with the proxy running, set your own browser to use the target
system as a proxy server. At that point, web requests from your system will
be routed through the target user’s web browser (completely invisible to the
user). Your traffic will inherit the user’s sessions and credentials, bypassing
any prompts. Using this method helps demonstrate to organizations that
security issues on their workstations can lead to the compromise of cloud
resources.

n o t e You’ll find additional details on this scenario at http://blog.cobaltstrike.com/
2013/09/26/browser-pivoting-get-past-two-factor-auth/. For Cobalt Strike–
specific instructions, see https://cobaltstrike.com/help-browser-pivoting.

http://blog.cobaltstrike.com/2013/09/26/browser-pivoting-get-past-two-factor-auth/
http://blog.cobaltstrike.com/2013/09/26/browser-pivoting-get-past-two-factor-auth/

30 Chapter 2

de f e nde r’s t ip

The browser proxy attack demonstrates that the need to secure important
services isn’t limited to just the systems on which they run but expands to the
entire environment, including engineers’ credentials and workstations. Once
an attacker is on a user’s workstation, it can be hard to detect their activ-
ity because the web traffic appears to be coming from a legitimate user on
their usual computer. However, you may be able to detect the Command and
Control (C2) back-channel traffic that is forwarding the requests and responses
from the workstation to the attacker’s system. For web traffic proxy attacks, this
traffic will typically be larger and much more frequent than normal C2 network
activity.

Utilizing Smartcards
The whole idea behind 2FA is that the user presents two items dur-
ing authentication to prove who they are. The first factor is usually a
password—something the user knows. The second factor either validates
“something the user has” (such as a phone) or “something the user is” (such
as fingerprints). Although the most common second factor involves validat-
ing that the person signing in has the correct phone through an authentica-
tor app or text messaging, this isn’t the only option. Some organizations use
smartcards (physical cards with an embedded cryptographic chip) to con-
firm the users are who they claim to be. Therefore, if smartcards are being
used, then obtaining one is a possible way to bypass 2FA. There are two
ways to get a user’s smartcard. The first is to gain control of a system where
the smartcard is currently inserted and use it from there, and the second is
to physically obtain the user’s card. Each method has its challenges.

Leveraging a smartcard inserted in a different system can be accom-
plished if you already have control of that system. Simply pass requests
through that host using the method discussed in the previous section. The
difficulty comes from the fact that you not only need access to the target
user’s system but you must make the requests while the user has their smart-
card inserted and after they’ve already entered their PIN (so it is cached).

When you’re stealing a user’s physical smartcard, the main challenges
are actually obtaining the card, avoiding detection, and determining
the user’s PIN. To overcome the first challenge, you have to find a way
to get close to the user and take their smartcard without them noticing.
This leads to the second impediment: most users will notice if their card
is missing, especially if they rely on it to log in to their computer. Some
companies’ smartcards also double as their employee badges and control
access to their buildings, in which case the user is even more likely to real-
ize what has happened and report it.

Access Methods 31

Another challenge is that smartcards typically have PINs associ-
ated with them, which are required to unlock the cards and use them
for authentication. You could try to guess the PIN (perhaps going with
common number patterns or the user’s birthday), but the smartcard could
be configured to lock after a specified number of incorrect PIN attempts.
A better way is to obtain the user’s PIN directly—for instance, by installing
a keylogger (either a physical device or a surreptitious application) on the
user’s system to try to catch the PIN as they type it. However, an often more
effective method is to grab the PIN out of the memory of the user’s com-
puter while the card is in use.

Mimikatz can retrieve that smartcard’s PIN from memory as long as the
user is logged in, their smartcard is inserted into the system, and they have
used their smartcard to log in. If all these conditions are met, the PIN will
appear in the Mimikatz output.

de f e nde r’s t ip

To ensure that smartcards remain secure, it is important to isolate the process of
issuing smartcard certificates from the rest of your infrastructure. Also, because
there are often many different templates available, with a variety of sensitiv-
ity levels (virtual smartcards, VPN certificates, and so on), be sure to properly
restrict which of those templates can be used to satisfy your 2FA requirements.
Have thorough auditing, monitoring, and alerting in place for certificate
operations.

Additionally, you must ensure the security of the systems used to connect
to sensitive servers, such as those that issue smartcards. Using a PAW, as
discussed in “Best Practices: Protecting Privileged Accounts” on page 26,
is a great way to achieve this. Because PAWs aren’t used for email or web
browsing, they are much less likely to be compromised than an administrator’s
primary system.

Stealing a Phone or Phone Number
This is probably the most difficult of the 2FA bypass options (and also the
least likely to be allowed under standard rules of engagement), but if you
pull it off, it has a high degree of success. As in the smartcard bypass, we are
once again obtaining something that provides a second factor for authen-
tication, only this time it is the user’s phone or control of their phone
number.

The most obvious approach is simply to steal the target user’s phone.
If the Azure subscription supports using text messages for authentication,
that is ideal. Because many phone operating systems display the first line
of a text message as a notification, on top of the lock screen, you can prob-
ably obtain a texted 2FA code without even unlocking the phone. When

32 Chapter 2

authenticator app–generated codes are used, you will somehow need to
guess or obtain the phone’s unlock code, if one is set. (This is beyond the
scope of this book.)

Another option is to obtain the user’s phone number and authenticate
with a text message option. Although most people consider a phone and
its number to be a unit, mobile phones and their numbers are actually
loosely coupled. In a number of recent reports, criminals were able to enter
a local mobile phone store pretending to be a customer and convince the
store to sell them a phone upgrade (billing the new phone to the real cus-
tomer’s account). Because an Azure penetration tester’s goal isn’t to steal
the latest smartphone, another tactic would be to tell the store clerk that
you replaced your phone and need a new subscriber identification module
(SIM) card. After leaving the store, simply insert the card into your phone
and authenticate.

This option requires using text message or phone call authentication,
because even when using a SIM card with the user’s phone number installed,
the authentication apps wouldn’t be registered with the 2FA backend. This
typically requires an out-of-band setup process that, hopefully, requires addi-
tional validation to confirm that the user performing the enrollment is who
they claim to be.

n o t e Aside from possibly being considered theft and potentially violating the phone pro-
vider’s terms of service, this is very risky. As soon as a new phone or SIM is issued on
that user’s account, their existing number will be transferred to it and the user’s exist-
ing phone will be disabled. Most users will notice very quickly when their phone no
longer has service, so know that once the theft is perpetrated, the time until the inci-
dent is reported is extremely limited. In other words, you are likely to be caught and
removed from the target subscription very quickly. Save this option for a last resort
and always consult your client and an attorney before attempting it!

Prompting the User for 2FA
Finally, it may be possible to trick the user into giving up their 2FA token
through social engineering, which is the process of convincing a user to do
something they wouldn’t normally do. This method is probably the least
likely to succeed because it relies on the user not noticing something is
amiss, so only use it if you are desperate. If the user is set up on their
phone to receive a pop-up alert that they need to acknowledge, this could
be as simple as triggering the authentication request and seeing if the user
accepts it. It is unlikely, but some users are so conditioned to acknowledge
prompts that they will do so even when they are not expecting one. Of
course, a savvy user may report such an event to their security team.

A slightly more advanced variation on this approach is to try to watch
the user’s activity and send a message when they are expecting this prompt.
Perhaps you suspect this user always logs in to the Azure Portal when they
arrive at work and you can time the prompt to coincide with this. Or maybe
you notice they work from a coffee shop and can see when they log in and

Access Methods 33

send the request then. Many users would think that their initial authoriza-
tion did not go through and that the system must simply be prompting
them again.

If the user relies on entering codes from text messages or an authenti-
cator application, it still may be possible to obtain the code. Two common
ways to do this are through phishing websites and phone calls.

To demonstrate how an attacker could use phishing to obtain 2FA
codes, you would first set up a page as we did in “Phishing” on page 19.
Next, you would modify the web page so that after prompting for the user-
name and password, the page asks for the user’s 2FA code. Because time is
of the essence, you need to design the page so that as soon as this informa-
tion is submitted, the site invokes a script on your machine to authenticate
to Azure, thus providing you access. As in the earlier example, the page
should then redirect the user to the real logon page so that they believe
something went wrong with their authentication. Once the site is func-
tional, you would email the user a link, as before.

Another way to obtain a code from the user would be to call them and
ask for it. For this to work, you would need to use pretexting, or making up
some legitimate-sounding reason for the call. For example, you could claim
to be from their IT department and that, due to a data corruption issue in
the user database, you need their current code to re-enable their access.
This method is probably as likely to get you reported as it is to get you a
valid code, but it can be used as a last resort.

De f e nDe r’s T ip

Despite some of the weaknesses in multi-factor authentication described in
this section, it is still one of the best ways to slow or prevent an attacker from
gaining access to a subscription. It increases an attacker’s time to compromise
considerably, especially if the target subscription has a minimal number of
management certificates and service accounts. Given that multi-factor support
is built in to Azure, it is relatively easy to enable. To get started, visit https://
azure.microsoft.com/en-us/documentation/articles/multi-factor-authentication/.

Summary
In this chapter, we discussed the two different Azure models—Azure
Service Management and Azure Resource Manager—and how each may
impact a penetration test. I demonstrated various ways to obtain creden-
tials for Azure, including recovering passwords from plaintext documents,
phishing, using memory, and even guessing. Next, we looked at using cer-
tificates for authentication and places they might be found, such as Publish
Settings files, recycled certificates in the certificate store, configuration

34 Chapter 2

files, and Cloud Service Packages. Finally, we examined two-factor authen-
tication bypasses via certificates, service accounts, stolen cookies, stolen
phone numbers, and social engineering.

Studying these access methods, we identified areas where users may
have left behind old credentials that are no longer in use. Cleaning up these
items reduces the attack surface of a client’s subscription. Additionally, test-
ing accounts for weak passwords can help find vulnerable credentials before
an attacker discovers them, as well as help teach users about proper pass-
word construction, in case the client is not already using high-entropy (highly
random, unpredictable) computer-generated passwords for everything other
than primary user accounts. Finally, we saw how much more difficult it is to
gain illegitimate access to a subscription when multi-factor authentication is
used consistently across all accounts.

In the next chapter, you’ll explore the subscriptions you’ve compro-
mised in your engagement and get a high-level view of the services run-
ning inside them.

3
R e c o n n a i s s a n c e

In this chapter, I show you how to search
subscriptions for useful data, such as what

storage accounts it uses, its SQL databases,
the virtual machines it contains, and any net-

work firewalls in place.
Like other large cloud service providers, Azure offers a growing list

of services, ranging from web hosting to databases, secret key storage, and
machine learning. With so many offerings, it can be hard to determine
which services and features a given customer is taking advantage of, and if
any of them are configured in a vulnerable way.

In this chapter, I will demonstrate how Azure’s PowerShell cmdlets and
command line tools can be used to quickly examine the contents of a sub-
scription. We start by authenticating to Azure in the console. Next, we enu-
merate a subscription’s web services, followed by its virtual machines. We
then get a list of the subscription’s storage accounts and their access keys,
followed by any internet-facing network ports and firewalls. Then we look
at SQL servers and databases.

By enumerating these services, you’ll be able to include all of your
 client’s resources in your pentest, ensuring that nothing is overlooked.

36 Chapter 3

This is crucial because when requesting an assessment, customers may
focus on production services but forget to mention test resources where
security controls may be lax. Similarly, documenting the contents of stor-
age accounts can help clients determine if they are following proper data
classification and storage practices.

After reviewing some powerful individual commands for commonly
used Azure services, I present scripts that are ideal for scanning any new
subscription you compromise.

Installing PowerShell and the Azure PowerShell Module
Before you begin, you need to install a few free tools from Microsoft. On
Windows, PowerShell and the Azure PowerShell module are the most
straightforward tools for gathering subscription information. Another
option are the Azure Command Line Interface (CLI) tools, which are
offered for Windows, Linux, and macOS.

On Windows
You have two ways to install these tools on Windows. If you’d like both the
PowerShell cmdlets and the command line interface, along with the ability
to update the tools whenever new versions are released, use the Microsoft
Web Platform Installer (WebPI). This small package manager makes it easy
to install a number of Microsoft tools, including those used to manage
Azure. WebPI also checks for missing dependencies, so if you don’t already
have PowerShell installed, it will take care of that for you.

To use WebPI, simply download the installer from https://www.microsoft
.com/web/downloads/platform.aspx and run it. Once it’s installed, search for
Web Platform Installer in the Start menu and launch the application.

You can use WebPI’s search box to find Microsoft Azure PowerShell
and Microsoft Azure Cross-platform Command Line Tools (see Figure 3-1).
Then click Add to download and install the tools. If multiple versions of a
tool are returned, choose the most recent release. (You can launch WebPI
again to check for updates to the packages.)

After running the installer, close any open PowerShell and command
line windows to be sure that the tools are recognized.

On Linux or macOS
If you are running Linux or macOS, you’ll need to install the Azure
Command Line Cross-platform Tools package. There are two versions of
this package—one written in Node.js and one in Python. I use the Node.js
versions in my examples, but both versions use similar syntax, so feel free to
use either one. You’ll find installer packages for the Node.js version in DMG
format for macOS and TAR format for Linux at https://github.com/azure/
azure-xplat-cli/. The Python version can be downloaded from https://github
.com/azure/azure-cli/. Install these as you would any other package on your
platform.

https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/web/downloads/platform.aspx
https://github.com/azure/azure-xplat-cli/
https://github.com/azure/azure-xplat-cli/
https://github.com/azure/azure-cli/
https://github.com/azure/azure-cli/

Reconnaissance 37

Figure 3-1: Using Microsoft’s Web Platform Installer to locate and install Azure tools

Running Your Tools
Once you’ve installed your tools, launch them. For the PowerShell module,
open a PowerShell window and at the prompt, run Import-Module Azure. For
the command line tools, open a terminal window and enter azure (or az if
using the Python version). If the command line tools are properly installed,
you should see a help message like the one shown in Figure 3-2.

Figure 3-2: The help message for the Azure command line tools

38 Chapter 3

At this point, you should have everything you need to begin connecting
to Azure. Let’s start gathering information about our target subscriptions
and their services.

Service Models
Recall from Chapter 2 that Microsoft uses two different service models in
Azure, each with its own set of commands to view or change services. For
every service discussed in this chapter, I provide the syntax for querying
both Azure Resource Manager (ARM) and Azure Service Management
(ASM), unless a service is exclusive to just one model.

The PowerShell module includes both ARM and ASM cmdlets. To
help keep things organized, commands for ASM services are typically
named Verb -AzureNoun, such as Get-AzureVM, whereas ARM commands
are Verb -AzureRmNoun, such as Get-AzureRmVM.

The command line tools take a different approach. Instead of using
different commands for each service model, you can place the azure exe-
cutable into either ARM or ASM mode, and it will stay in that state until
the mode is switched.

To determine the currently selected mode, view the last line of output
when azure is run with no other options. To switch modes, run azure config
mode asm to target the ASM model or run azure config mode arm to target the
ARM model. Listing 3-1 shows the output of Azure CLI when switching
modes, as well as the last line of the Azure command to confirm the cur-
rent mode.

C:\>azure config mode asm
info: Executing command config mode
info: New mode is asm
info: config mode command OK

C:\>azure
--snip--
help: Current Mode: asm (Azure Service Management)

C:\>azure config mode arm
info: Executing command config mode
info: New mode is arm
info: config mode command OK

C:\>azure
--snip--
help: Current Mode: arm (Azure Resource Management)

Listing 3-1: Switching and verifying modes in Azure CLI

Reconnaissance 39

Best Practices: PowerShell Security
Since its official release in 2006, PowerShell has grown in popularity, capabil-
ity, and maturity. Originally a scripting language to perform basic Windows
management, PowerShell is now the de facto way to manage a wide variety
of Microsoft products and services, which of course includes Azure. Because
it offers so many features, PowerShell has also been attractive for hackers.
As a system administrator or defender, you need to be aware of a number of
settings to ensure that PowerShell remains secure on your systems. As we’ve
already seen, a compromised workstation could lead to Azure subscription
access, so securing endpoints is important!

First, enable PowerShell logging, and make sure this data is forwarded
to your security auditing solution. Not only will this increase the speed
of detecting an attacker leveraging PowerShell in your environment, it
will give the defenders a clear picture of what actions were taken by the
attacker. Forwarding events also makes it harder for an attacker to tamper
with event logs.

n o t e Microsoft’s Lee Holmes published an excellent article on all the ways in which the
PowerShell team has engineered blue team capabilities into PowerShell. You can
find it at https://blogs.msdn.microsoft.com/powershell/2015/06/09/
powershell-the-blue-team/.

Second, be aware that PowerShell supports remote sessions and
remote command execution, using the WS-Management protocol on TCP
ports 5985 and 5986. Additionally, now that PowerShell has been ported
to Linux, remote PowerShell commands can also be executed over SSH
(TCP port 22). PowerShell remoting is typically enabled by default on
Windows Server installations but disabled on workstations. All forms of
PowerShell remoting require authentication, and usually an account with
membership in the administrators group is required to connect. Although
remote PowerShell makes management of large quantities of remote sys-
tems easier, it can also lead to illegitimate access if administrator accounts
aren’t closely guarded or if remoting permissions are made too broad. A
discussion of PowerShell remoting security can be found at https://docs
.microsoft.com/en-us/powershell/scripting/setup/winrmsecurity/.

Finally, consider using PowerShell security features such as constrained
language mode. When in use, constrained language mode greatly reduces
the ability to arbitrarily run some of the more powerful operations in Power-
Shell, without impairing the ability to run properly signed scripts. This way, if
an attacker does gain access to a PowerShell session on a system, they won’t be
able to utilize many of the tools or scripts they’d like to run. A great introduc-
tion to constrained language mode is available at https://blogs.msdn.microsoft
.com/powershell/2017/11/02/powershell-constrained-language-mode/.

https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/
https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/
https://docs.microsoft.com/en-us/powershell/scripting/setup/winrmsecurity/
https://docs.microsoft.com/en-us/powershell/scripting/setup/winrmsecurity/
https://blogs.msdn.microsoft.com/powershell/2017/11/02/powershell-constrained-language-mode/
https://blogs.msdn.microsoft.com/powershell/2017/11/02/powershell-constrained-language-mode/

40 Chapter 3

Authenticating with the PowerShell Module and CLI
To gather details about any services in Azure, you first need to authenti-
cate. The authentication process varies depending on the type of creden-
tial (username and password, service principal, or management certificate),
the service model, and the tool being used (Azure CLI or PowerShell).
Table 3-1 shows, for each credential type, which service model/tool pairs you
can use to authenticate. Note that not every combination of these options is
possible.

Table 3-1: Supported Authentication Methods by Service Model and Tool

Tool/interface Username and
password

Management
certificate

Service principal
with password

Service principal
with certificate

Azure CLI – ASM mode Supported Partially supported Not supported Not supported

Azure CLI – ARM mode Supported Not supported Supported Supported

Azure PowerShell ASM
cmdlets

Supported Supported Not supported Not supported

Azure PowerShell ARM
cmdlets

Supported Not supported Supported Supported

http://portal.azure.com/ Supported Not supported Not supported Not supported

http://manage
.windowsazure.com/

Supported Not supported Not supported Not supported

As you can see, a username and password pair is accepted by each
Azure management interface. Authenticating with a username and pass-
word pair has a few other advantages as well. For one, once authenticated,
you probably won’t need to know what subscriptions a given user has access
to, because you can use their password to sign in to either of the Azure
web interfaces to see a list of their subscriptions. In contrast, the command
line interfaces expect you to specify the target subscription when executing
a command.

Usernames and passwords are easier to use than management certifi-
cates and service principals. Each tool will present a login prompt that
accepts a password. If the user doesn’t have multi-factor authentication
enabled, you’re good to go. Authentication with management certificates
or service principals might require a series of commands. Let’s take a look
at how to authenticate with them.

Authenticating with Management Certificates
When authenticating with management certificates, you need to know the
subscription ID you plan to target. As you know from the scoping discussion
in Chapter 1, this shouldn’t be a problem.

Of course, your certificate needs to be in the management certificate
list for the target subscription for authentication to succeed. The best way
to determine where a given certificate can be used is through educated

http://manage.windowsazure.com/
http://manage.windowsazure.com/

Reconnaissance 41

guessing and trial and error. In other words, if a certificate came from
a developer’s machine who owns one subscription, or if the certificate is
checked into a code repository for a service that you know runs in your
target subscription, there’s a very good chance it will work. Luckily, trying
a certificate and finding it doesn’t work doesn’t really have a downside.
Although the failed connection attempt may be logged somewhere, I’ve yet
to encounter such a log, and in practice, no subscription owner has ever
detected my attempts to penetrate their subscription because I tried the
wrong certificate.

Installing the Certificate
In order to use the certificate, you first need to install it into your com-
puter’s certificate store. To do so, double-click the certificate file and walk
through the wizard. The certificate location doesn’t matter, but if you
choose to place it in the Local Machine store, you need to run subsequent
commands with administrative (User Account Control–elevated) rights.

Authenticating
The PowerShell script shown in Listing 3-2 authenticates to a subscription
using a certificate. This allows you to run subsequent commands against the
subscription, using this certificate as your credential.

 PS C:\> $storeName = "My"
 PS C:\> $storeLocation = "LocalMachine"
 PS C:\> $certs = Get-ChildItem Cert:\$storeLocation\$storeName
 PS C:\> $certs

Thumbprint Subject
---------- -------
8D94450FB8C24B89BA04E917588766C61F1981D3 CN=AzureCert

 PS C:\> $ azureCert = Get-Item Cert:\$storeLocation\$storeName\
 8D94450FB8C24B89BA04E917588766C61F1981D3

 PS C:\> $azureCert
Thumbprint Subject
---------- -------
8D94450FB8C24B89BA04E917588766C61F1981D3 CN=AzureCert

 PS C:\> $azureCert.HasPrivateKey
True

 PS C:\> Set-AzureSubscription -SubscriptionName 'Target' -SubscriptionId
 Subscription_ID -Certificate $azureCert
PS C:\> Select-AzureSubscription -SubscriptionName 'Target'

 PS C:\> Get-AzureAccount
Id Type Subscriptions
-- ---- -------------
8D94450FB8C24B89BA04E91758... Certificate Subscription_IDs

Listing 3-2: Authenticating to Azure using management certificates in PowerShell

42 Chapter 3

Here’s what’s happening in Listing 3-2, step by step:

1. To authenticate with a management certificate, we need to retrieve it
from the certificate store. We first specify that the certificate is installed
in the Personal directory (My) , within the LocalMachine store (as
opposed to the CurrentUser store). If you installed it elsewhere, be sure
to use the programmatic name for that location, which you can find on
Microsoft’s website at https://msdn.microsoft.com/en-us/library/windows/
desktop/aa388136(v=vs.85).aspx.

2. We then request a list of certificates in that location and place it into
the variable $certs .

3. To see the list of certificates available, we execute the variable as a
command . The output tells us that the only certificate installed is
AzureCert, and it lists the certificate’s thumbprint as well (“8D9 . . . 1D3”).
The thumbprint uniquely identifies a certificate.

4. Next, we get a reference to the certificate object with the Get-Item
cmdlet, using the thumbprint to select the correct certificate .

5. To see if you have a usable certificate, issue the certificate variable
name as a command to ensure that a certificate was retrieved, as
shown at . If you see an empty response, something went wrong
with the Get-Item command and you should double-check that you
entered the values at correctly.

6. Finally, we see if the certificate we’ve found has the associated private
key with HasPrivateKey . Without the private key, you won’t be able to
use it to connect to the subscription.

Connecting and Validating Access
With the certificate ready to use, try to connect to the subscription. You
can do so by using two commands: Set-AzureSubscription followed by
Select-AzureSubscription. In the former command, you specify the name
of the subscription, subscription ID, and the certificate variable . If you
don’t know the name of the subscription, just make something up. Now,
because you may have access to numerous subscriptions, use the Select
-AzureSubscription cmdlet to specify the subscription that PowerShell should
run subsequent commands against. Note that the name here must match
the one specified in the set command.

At this point, if the certificate was valid for that subscription, you
should have access. To confirm, run Get-AzureAccount . If the subscription
is listed, you should now be able to run any other Azure ASM commands
against the subscription to view and interact with its ASM resources.

Azure CLI technically supports management certificates in its ASM
mode, but it fails in practice to properly load certificates. The workaround
is to use a .publishsettings file instead of a certificate.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa388136%28v%3Dvs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa388136%28v%3Dvs.85%29.aspx

Reconnaissance 43

Because .publishsettings files are just XML documents embedded with
base64-encoded management certificates and subscription IDs (as discussed
in Chapter 2), you can manually create one given the certificate and subscrip-
tion ID. The steps to do so are a bit lengthy; fortunately, software developer
and Microsoft MVP Gaurav Mantri has posted sample code to automate
the process: http://gauravmantri.com/2012/09/14/about-windows-azure-publish
-settings-file-and-how-to-create-your-own-publish-settings-file/.

Once you have a .publishsettings file, run the following to add the cre-
dential to Azure CLI:

C:\>azure account import "Path_to_.publishsettings_File"

Next, run a command to verify that the credential works, such as azure
vm list. If you see the error We don't have a valid access token, the credential
did not work. Upon successful authentication, you should see info: vm list
command OK, even if the subscription contains no virtual machines.

Best Practices: Service Principals
Service principals replace management certificates as the preferred way for
apps, scripts, and services to programmatically access and manage Azure
resources. There are several security advantages to using service principals
over management certificates.

The most notable improvement with service principals is their ability
to have a limited scope of permissions. By default, a service principal is cre-
ated for use with a single application and can be granted the specific rights
it needs to perform its function. Following the principle of least privilege,
test which rights are actually needed for your application; don’t just give it
access to everything, as this would allow an attacker to wreak havoc if the
service principal was compromised.

Also, service principals can be created with either a long, automatically
generated password (referred to as its client secret) or a certificate for authen-
tication. When you create a service principal with a password, the client
secret value is displayed only once, and you cannot view it again after navi-
gating away from that page in the portal. (It can be regenerated if needed,
though.) As such, the page encourages you to record the value. Be sure that
this value is stored in a secure place, such as Key Vault or a password man-
ager. Avoid storing it in a source control repository, as this makes it hard to
control or track who has access as well as who has viewed it, and it’s difficult
to remove from version history. Secrets stored in source code are a common
source of breaches. Likewise, never store such secrets in a plaintext file,
even temporarily.

Lastly, be sure to document the purpose of all service principals you
create and periodically review the service principals with permissions to
your resources. As applications are retired, it’s easy to forget to remove old
service principals; cleaning up old accounts reduces the attack surface of
the subscription and its resources.

http://gauravmantri.com/2012/09/14/about-windows-azure-publish-settings-file-and-how-to-create-your-own-publish-settings-file/
http://gauravmantri.com/2012/09/14/about-windows-azure-publish-settings-file-and-how-to-create-your-own-publish-settings-file/

44 Chapter 3

Authenticating with Service Principals
Recall from Chapter 2 that service principals are the Azure-based equiva-
lent of service accounts found in most companies’ domains. Just as in on-
premises environments, these accounts are used when a service needs to
run regularly—that is, independent of a particular administrator’s account.

Azure provides two authentication options for these accounts: pass-
words and certificates. However, service principals are more restrictive than
regular accounts or management certificates. Because service principals are
tied to a particular application, they usually only have rights to what that
application needs to access. Additionally, service principals check for pass-
word expiration or certificate validity (depending on the authentication
method you use), so a captured credential can’t be used indefinitely.

De f e nDe R’s t ip

Because service principals can’t use multi-factor authentication, they may pose
a greater risk than standard user accounts that use a second factor during
authentication. Although service principals do have long, auto-generated pass-
words or strong certificate-based keys, which help to mitigate the risk of brute-
forcing and password-guessing attacks, to be safe, you should make sure your
service principals only have the minimum amount of privileges needed to per-
form their duties. Additionally, it’s far better to use several service principals,
each dedicated to performing a specific task with a small set of rights, than to
have one service principal with full control over everything in a subscription.
Sure, the initial setup will be a bit more complex, but the security benefits are
worth it.

Using Service Principals with Passwords
To connect as a service principal with a password, you’ll need the service
principal’s GUID (usually referred to as a client ID or application ID), its
password (also called a key in the Azure portal), and the tenant ID of the
Azure Active Directory instance where that service principal is defined
(another GUID). You’ll most likely find the tenant ID where you discovered
the client ID and password, since any program using the service principal
would also need this value. Once you have these values, you should be able
to authenticate in PowerShell or Azure CLI, as discussed next.

PowerShell

In PowerShell, run the following commands:

 PS C:\> $key = Get-Credential
 PS C:\> $tenant = Tenant_ID
 PS C:\> Add-AzureRmAccount -Credential $key -ServicePrincipal -TenantId $tenant

Reconnaissance 45

Environment : AzureCloud
Account : Service_Principal_ID
TenantId : Tenant_ID
SubscriptionId :
SubscriptionName :
CurrentStorageAccount :

The Get-Credential cmdlet should open a dialog with space for you to
enter a username and password. Enter the application ID value as the user-
name and the key as the password . On the next line, save the tenant ID as
a variable and then pass both values into Add-AzureRmAccount . If you have
it, you can also specify a subscription using the -SubscriptionID parameter of
Add-AzureRmAccount, though this will return an error if the service principal
doesn’t have rights to any resources in the subscription.

Azure CLI

To authenticate in Azure CLI with a password-based service principal, make
sure Azure CLI is in ARM mode and then run the following command:

C:\>azure login --service-principal --username "Client_ID"
 --password "Key" --tenant "Tenant_ID"

This command will not display any output, so use azure resource list
to see if it worked and to show existing resources. If the credential doesn’t
work, it should display an error.

n o t e Generally, I surround argument values passed in to various commands with double
quotes, such as the username and password values here. This isn’t required if the
input provided doesn’t contain spaces; however, because Azure allows spaces in many
of its fields, such as service names, it’s safer to assume that the input has a space and
to wrap it in double quotes.

Authenticating with X.509 Certificates
Service principals can also be authenticated with X.509 certificates. To do
this in PowerShell, run the following commands:

 PS C:\> $thumbprint = Certificate_Thumbprint
 PS C:\> $appId = Service_Principal_ID
 PS C:\> $tenant = Tenant_ID
 PS C:\> Add-AzureRmAccount -ServicePrincipal -TenantId $tenant

 -CertificateThumbprint $thumbprint -ApplicationId $appId

Environment : AzureCloud
Account : Application_ID
TenantId : Tenant_ID
SubscriptionId : Subscription_ID
SubscriptionName :
CurrentStorageAccount :

46 Chapter 3

Be sure to specify the thumbprint of the certificate you plan to use ,
instead of a password, and enter the service principal ID (application ID)
on the command line because there will be no prompt for a credential.
The tenant ID is the same as in password-based authentication. For
the Add-AzureRMAccount command, replace the -Credential switch with the
-CertificateThumbprint switch .

Best Practices: Subscription Security
Subscription owners can take a number of steps to reduce the attack sur-
face of their subscription and increase their awareness of changes in it. This
includes keeping the number of highly privileged users in the subscription
to a minimum, limiting the rights of nonhuman accounts, enabling audit-
ing, limiting the scope of services in each subscription, and using JIT and
Azure PIM (as described in “Best Practices: Protecting Privileged Accounts”
on page 26) to protect the remaining accounts.

First, a subscription is only as secure as its weakest administrator.
Therefore, it is crucial to require users to select strong passwords and
enforce multi-factor authentication on all subscription user accounts.
Limiting the number of users with access to the subscription also reduces
the odds of compromised user accounts or computers being used for suc-
cessful attacks against a subscription.

Next, look at the number of nonhuman accounts with access to the sub-
scription, including management certificates, service accounts, and service
principals. Administrators often feel less accountability for these accounts,
particularly if they are shared among multiple people.

Additionally, auditing plays a key role in tracking access to subscrip-
tions, identifying anomalies, and providing accountability for actions
taken against the subscription. Without audit logs, defenders will have a
very difficult time determining how an adversary gained access and what
actions they took in the event of a breach. Microsoft has thorough docu-
mentation describing the types of logging available in Azure, and how to
enable it, at https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/
monitoring-overview-activity-logs/.

Another consideration is the scope of services running within a sub-
scription. Some companies are tempted to provision just a few subscriptions
and put multiple workloads in each, but this can exacerbate the too-many-
administrators issue. It can also lead to the creation of confusing security
permissions to keep everyone limited to their own resources (or worse, per-
missions that give everyone free rein over everything in the subscription). I
suggest using a separate subscription for each major project, and potentially
different subscriptions for development, pre-production, and production
deployments. For particularly sensitive resources, such as a Key Vault hosting
critical secrets, it might make sense to place them in their own subscription.

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview-activity-logs/
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview-activity-logs/

Reconnaissance 47

To assist in making these changes and ensuring that a subscription
does not slip back into insecurity over time, Microsoft has released a sub-
scription and resource security automation toolkit known as the Secure
DevOps Kit. We’ll cover this in depth in Chapter 8.

Finally, consider using Azure PIM, so accounts only have administrative
rights in the subscription when those privileges are needed. PIM also allows
for additional auditing when those rights are used. For more details, see
“Best Practices: Protecting Privileged Accounts” on page 26.

Gathering Subscription Information
Once you’re signed in, you can begin gathering information about the sub-
scription and its services. The data you gather will help determine where to
perform deeper investigation. The first thing to gather from any subscription
is data about the subscription itself, such as the name of the subscription and
what accounts have access to it. This information often allows you to deter-
mine what a subscription is used for, and you can get some clues as to how
best to pivot into other subscriptions.

When gathering this data, begin by listing the currently selected sub-
scription. That listing should provide you with the name of the current
subscription and its subscription ID. The subscription name is often quite
informative. For example, it may contain a team or project name, such as
“Human Resources – Production Site” or “E-Commerce Test Environment.”
Additionally, confirm that the subscription ID is one you were expecting
and that it is in scope for your assessment.

To list the current ASM subscription in PowerShell, run the following
command:

PS C:\> Get-AzureSubscription -Current

SubscriptionId : d72ad5c5-835a-4908-8f79-b4f44e833760
SubscriptionName : Visitor Sign-In Production
Environment : AzureCloud
DefaultAccount : admin@burrough.com
IsDefault : True
IsCurrent : True
TenantId : 7eb504c7-c387-4fb1-940e-64f733532be2
CurrentStorageAccountName :

This command should return a PSAzureSubscription object and display
the subscription name, subscription ID, the Azure Active Directory ten-
ant ID, and the account you are connected with. It should also display the
environment, which is the type of Azure cloud where this subscription
is hosted. For example, AzureCloud is the default commercial version of
Azure, whereas AzureUSGovernment is a separate instance of Azure just
for US government use.

48 Chapter 3

n o t e Some countries with unique privacy and data laws, like Germany and China, have
their own clouds. You can find a list of cloud environments and their management
URLs by running Get-AzureEnvironment.

To view current subscription information for ARM subscriptions in
PowerShell, you can run the Get-AzureRmContext cmdlet. This command
should return a PSAzureContext object, which is a container that holds
PSAzureRmAccount, PSAzureEnvironment, PSAzureSubscription, and PSAzureTenant
objects. In other words, its output should let you drill into specific details
of the tenant, subscription, and account you are using.

Put a variable name and an equals sign before the context command so
its output will be saved into a variable you can reference later, like this:

PS C:\> $context = Get-AzureRmContext

Next, enter the variable name again, followed by a dot, followed by the
data you want to drill into (Account, Environment, Subscription, or Tenant) to
return all the available information for that object. For example, you could
run the following:

PS C:\> $context.Account

n o t e It can be tricky to remember what options you can use on a given object represented
by a variable. Fortunately, PowerShell has autocomplete. Just type the variable name,
followed by a dot, and then press tab to show the first possible option. Keep press-
ing tab to cycle through possible options. When you reach to the one you want, press
enter to run it. Alternatively, you can use the Get-Member cmdlet to see all possible
values.

Run this cmdlet to show which users have ARM access and their
privileges:

PS C:\> Get-AzureRmRoleAssignment

To view all possible ARM roles, run the following:

PS C:\> Get-AzureRmRoleDefinition

If you’re using the Azure command line tools, run

C:\>azure account show

to see the current subscription. Although the CLI won’t display the current
user account, it should show the subscription ID and name, as well as the
environment and the tenant ID, if available. It should also show whether
you’re connected using a certificate.

Reconnaissance 49

You can use the CLI in ARM mode to display accounts that have access:

C:\>azure role assignment list

You can also show all available roles, like so:

C:\>azure role list

Viewing Resource Groups
Resource groups were added in ARM as a way to assemble a set of services into
one package for easier management. For example, a website might consist of
the web pages themselves, along with a SQL database to store user profiles,
and an instance of Application Insights (a telemetry service for applications).
In ASM, each of these items was managed separately, and it was often diffi-
cult to tell which services were related. Resource groups allow you to monitor
all related services, see how much a given deployment costs to run, assign
permissions to all services in a group at once, and even delete everything in
a group in one place. (Resource groups also help with reconnaissance by giv-
ing you a jumpstart in understanding these relationships and evaluating the
potential importance of a given service.)

Resource groups pose two challenges, however. The first is that some
developers might not understand how to use resource groups and simply
create a new group for each service, even for related ones. Because resource
groups are a management convenience, and not a security boundary,
nothing prevents services in different groups from interacting with one
another.

Second, when you’re investigating a given service, the ARM PowerShell
cmdlets usually have the resource group as a required parameter, as does
Azure CLI when in ARM mode. This can be frustrating, because you may
know the name of a resource but not in which resource group it resides. To
determine this, you’ll need to use separate commands to enumerate the
groups.

To view the resource groups for a subscription using PowerShell, run
the following:

PS C:\> Get-AzureRmResourceGroup

In Azure CLI, run this:

C:\>azure group list

Each command will show all resource groups in a subscription, but
not which services are in these groups. It can be tedious running the enu-
meration commands on a subscription with dozens or even hundreds of

50 Chapter 3

groups. Fortunately, you can list all ARM resources in a subscription, along
with their resource group and their service type, at a high level. To get the
resource list in ARM PowerShell, run the following:

PS C:\> Get-AzureRmResource

In Azure CLI, use this:

C:\>azure resource list

The output of these commands can get pretty ugly, so put it in a spread-
sheet and use it as a guide to make sure your investigation doesn’t miss
anything.

Viewing a Subscription’s App Services (Web Apps)
When a company decides to move some of its services to the cloud, its website
is often an easy first step. After all, most or all of that data is already public,
so the confidentiality concerns often associated with storing data on remote
servers are greatly reduced. Additionally, websites can take advantage of
the auto-scaling features of Platform as a Service (PaaS) cloud providers to
increase capacity during busy times such as new product launches and holi-
day shopping.

Microsoft initially called these sites Web Apps in the old management
interface, but has moved their management entirely to the new portal and
renamed them App Services. The new portal also offers a gallery of pre-built
web service templates—everything from blogs to e-commerce platforms.
One benefit of this migration is that even apps deployed under the ASM
model are viewable from the ARM PowerShell cmdlets and the ARM mode
of the CLI.

Using PowerShell

To view the Web Apps in a subscription using PowerShell, run Get
-AzureRmWebApp with no parameters. The legacy Get-AzureWebsite will return
the site list. Both commands allow you to pass the name of a site as a param-
eter to get additional details. Try the ASM version of the command because
it returns details that the ARM version leaves out on classic websites.
Listing 3-3 shows an example of this output.

 PS C:\> Get-AzureWebsite
Name : anazurewebsite
State : Running
Host Names : {anazurewebsite.azurewebsites.net}

 PS C:\> Get-AzureWebsite -Name anazurewebsite
Instances : {d160 ... 0bb13}
NumberOfWorkers : 1
DefaultDocuments : {Default.htm, Default.html, index.htm...}

 NetFrameworkVersion : v4.0

Reconnaissance 51

 PhpVersion : 5.6
RequestTracingEnabled : False
HttpLoggingEnabled : False
DetailedErrorLoggingEnabled : False

 PublishingUsername : $anazurewebsite
 PublishingPassword : gIhh ... cLg8a

--snip--

Listing 3-3: Output from the Get-AzureWebsite PowerShell cmdlet

After retrieving the names of any Azure websites and their URLs , pass
the name of a site you are interested in to Get-AzureWebsite using -Name .
Some of the details that Get-AzureWebsite provides but that Get-AzureRmWebApp
omits are the version of .NET and PHP the site is running, as well as
the username and password of the account used to publish site con-
tent. These values are clearly useful to an attacker because they can make it
possible to look for known PHP and .NET exploits based on version. They
also provide the ability to modify site content.

Using the CLI in ASM

You can retrieve similar data using the CLI. In ASM mode, use the command
azure site list to see a listing of all subscription websites, and then run

C:\>azure site show "sitename"

to see a given site’s details. The detailed output isn’t as thorough as the
PowerShell cmdlet; instead, many of the details get their own command,
such as

C:\>azure site appsetting list "sitename"

To see all of these options, run azure help site.

Using the CLI in ARM

In ARM mode, the CLI requires you to provide the resource group of the
website in ARM mode, even if you simply want to enumerate a list of sites.
Start with a list of resource groups, using azure group list. Then, once you
have the list of groups, run azure webapp list "group_name" for each resource
group. From there, run the following to see detailed information:

C:\>azure webapp show "group_name" "app_name"

As with the ASM CLI, some details are hidden behind additional sub-
commands. To see these options, enter azure help webapp.

Gathering Information on Virtual Machines
As the quintessential Infrastructure as a Service (IaaS) role, virtual machines
(VMs) are one of the most frequently encountered services in an Azure

52 Chapter 3

subscription. In terms of management, Azure actually breaks down VMs
into several components, which are all configured separately with different
commands. I’ll discuss how to get information about the VM container
itself and then show you how to get at the VM’s hard disk image and net-
work settings.

Viewing a List of VMs

Unlike App Services, virtual machines are segregated by service model, with
classic VMs only appearing in the ASM cmdlets and ARM VMs appearing
exclusively in the ARM cmdlets. Running Get-AzureVM in PowerShell returns a
list of ASM-based VMs, including each VM’s service name, name, and status.
For a detailed status report for a VM, use the service name parameter of the
cmdlet:

PS C:\> Get-AzureVM -ServiceName "service_name"

This report should include information like the VM’s IP address, DNS
address, power state, and the “size” of the VM.

W h at V M pR icing t ie Rs R e V e a l a bou t ta Rge t s

VM sizes map to a particular set of hardware allowances for the VM and a
monthly cost. For example, an A0 VM has 768MB of memory, 20GB of hard
drive space, one CPU core, and one network interface, whereas a D14 VM
has 112GB of memory, 800GB of SSD-based storage, 16 CPU cores, and up
to eight network interfaces. The specifications for each tier can be found at
https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines
-windows-sizes/, and current pricing is available from https://azure.microsoft
.com/en-us/pricing/details/cloud-services/.

These details can be critical because they provide some indication of the
importance, workload, or value of the VM. Test VMs are often in the A0–A3
range, whereas production VMs are often in the higher-level D tier. Also,
specialty tiers such as N provide dedicated hardware-based Nvidia graphics
processors (GPUs) directly to the VM. These are used for computationally inten-
sive work, such as rendering animations (or, for us penetration testers, cracking
passwords).

Viewing a List of ARM VMs in PowerShell

To get a list of ARM VMs in PowerShell, use the Get-AzureRmVM cmdlet with
no parameters. This should return each VM in the subscription, along with
its resource group’s name, region, and size.

https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-windows-sizes/
https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-windows-sizes/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/

Reconnaissance 53

Listing 3-4 shows how to get the details of an ARM VM in PowerShell.

 PS C:\> $vm = Get-AzureRmVM -ResourceGroupName "resource_group" -Name "name"
 PS C:\> $vm

ResourceGroupName : resource_group
...
Name : VM_name
Location : centralus
--snip--
HardwareProfile : {VmSize}
NetworkProfile : {NetworkInterfaces}
OSProfile : {ComputerName, AdminUsername, LinuxConfiguration, Secrets}
ProvisioningState : Succeeded
StorageProfile : {ImageReference, OsDisk, DataDisks}

 PS C:\> $vm.HardwareProfile
VmSize

Basic_A0

 PS C:\> $vm.OSProfile
ComputerName : VM_name
AdminUsername : Username
AdminPassword :
CustomData :
WindowsConfiguration :
LinuxConfiguration : Microsoft.Azure.Management.Compute.Models.LinuxConfiguration
Secrets : {}

 PS C:\> $vm.StorageProfile.ImageReference
Publisher Offer Sku Version
--------- ----- --- -------
Canonical UbuntuServer 16.04-LTS latest

Listing 3-4: Obtaining details for an ARM VM in PowerShell

The first command gets the details of the VM and saves them into the
variable $vm . Next, we dump the information stored in the variable
and show the VM size . This information is available in the initial VM
enumeration from Get-AzureRmVM, but it’s nice to have it inline with the rest
of the details of the specific VM when reading the output later.

Now we dump the OS profile block , which includes the administra-
tor’s username (sadly, the password is usually omitted). Finally, we display
the image reference information from the storage profile . This tells
us the base image of the VM, which often includes version details—in this
case, Ubuntu Server version 16.04 Long Term Support (LTS) edition.

Collecting Information with the CLI

To collect this information from the CLI in ASM mode, use azure vm list to
enumerate the classic VMs in the subscription and then use azure vm show
"name" on each VM to see its details.

54 Chapter 3

Using the CLI in ARM mode is almost identical for VMs—the enumera-
tion command is also azure vm list. The only change is that, in order to
show the details of a VM, ARM mode also requires the resource group:

C:\>azure vm show "resource_group_name" "VM_name"

Unlike PowerShell, this will display all the details at once, including the
username, VM size, and OS version.

Finding Storage Accounts and Storage Account Keys
Azure Storage is the primary place to store data in Microsoft’s cloud.
Storage accounts offer four types of data storage, and any given storage
account can have any or all of these types in use at a time. Blob storage is
used to hold unstructured data, including files and large binary steams. File
storage is just like blob storage, except that it offers direct Server Message
Block (SMB) access to files. (This is convenient because blob storage has
traditionally required the use of either complicated APIs or third-party
tools to access its contents. I’ll cover how to use these tools to extract
data in Chapter 4.) Table storage is a scalable, NoSQL tabular dataset con-
tainer. Finally, queues hold transient messages for ordered, asynchronous
processing.

Many other services rely on storage accounts to host their underlying
data, including virtual machines. The Virtual Hard Disk (VHD) files used
in VMs are stored here as blobs. Other services, such as Azure Websites,
Machine Learning, and Activity Log, can use a storage account to hold
their log files.

Your reconnaissance should answer two main questions about storage
accounts:

•	 Which storage accounts are available in the target subscription?

•	 What are their keys?

Answering the first question is straightforward, as long as you remem-
ber that classic (ASM-based) storage accounts and ARM-based storage
accounts are completely separate in Azure, so remember to look for
both types. To check for classic storage accounts in PowerShell, use the
Get-AzureStorageAccount cmdlet without any parameters to list all ASM stor-
age accounts in the subscription. The equivalent command in Azure CLI
is azure storage account list. Both commands will show the storage account
name, its type (whether its data is redundant in one datacenter, one region,
or multiple regions), and its location (the datacenter where the data is
being stored, such as Central US). The PowerShell command also provides
some additional details, such as the URLs used for the account, but this
information can be obtained from the CLI with the azure storage account
show "account_name" command.

Checking for ARM storage accounts is equally easy. In the CLI, the
same commands you use for ASM work for ARM (once the CLI mode is
switched). For PowerShell, the command is Get-AzureRmStorageAccount.

Reconnaissance 55

Next, you’ll need the storage account keys to access data within Azure
Storage. Azure assigns two base64-encoded, 64-byte keys to each storage
account. They’re labeled “primary” and “secondary,” but you can use either.
Having two keys simultaneously allows administrators to rotate keys without
bringing down their service by following these steps:

1. Updating their service’s configuration to go from using the primary
to the secondary key

2. Using the Azure portal to generate a new primary key

3. Updating their service to switch from the secondary to the new
primary key

You won’t have too much trouble obtaining these keys. Because the
same key (or same two keys) is used for every service that accesses that stor-
age account, administrators need a way to easily retrieve the key again and
again, each time they add or update a service. Additionally, because the key
is used everywhere and doesn’t expire unless a new key is generated, most
administrators never change it, since following the preceding three steps
for multiple services can be tedious.

De f e nDe R’s t ip

Knowing how to properly reset a leaked or otherwise compromised credential
is critical to a speedy remediation if a security incident arises. Understanding
authentication dependencies is equally important in order to minimize disrup-
tions that could result from credential changes. It is therefore wise to practice
resetting or “rolling” any type of credential used by your organization regu-
larly, and to make optimizations as needed, so that you can reset credentials
promptly and accurately during a real attack. Storage keys or SSL private keys
are no different—practice switching between primary and secondary keys in
all of your services during development and in production to make sure you’ve
properly documented every place where the keys need to be replaced.

Because the keys need to be retrievable, Azure exposes them via the
portal, PowerShell, and CLI. To get the both the primary and secondary
keys for an ASM storage account in PowerShell, run

PS C:\> Get-AzureStorageKey -StorageAccountName "Storage_Account_Name"

To do the same in ARM PowerShell, use this:

PS C:\> Get-AzureRmStorageAccountKey -ResourceGroupName
 "Resource_Group_Name" -StorageAccountName
 "Storage_Account_Name"

56 Chapter 3

In the CLI, getting the ASM keys is easy; just execute the following:

C:\>azure storage account keys list "account_name"

For some reason, the ARM CLI command to get the keys behaves dif-
ferently from all other ARM CLI commands. It requires the resource group
name of the storage account, but it doesn’t accept the group name as a
parameter on the command line; therefore, as in ASM mode, you’ll need
to run the following command:

C:\>azure storage account keys list "account_name"

As soon as you run this command, you’ll be prompted to provide the
resource group name. Enter it at the prompt and then the keys should be
displayed.

Gathering Information on Networking
Networking is one of the more complex parts of Azure because it involves
IP address assignments, firewall rules, virtual networks, and virtual private
networks (VPNs). It can even involve a dedicated circuit between a busi-
ness and Azure, known as an ExpressRoute. An ExpressRoute connection
is essentially a dedicated wide area network (WAN) link that allows a com-
pany to treat resources running in Azure as a part of its internal corporate
network. During this phase of the operation, I focus on simply enumerating
the commonly used networking features: network interfaces (IP addresses),
endpoints (ports), and network security groups (firewalls). I cover more
advanced topics in Chapter 6.

Network Interfaces
Network interfaces are the virtual network cards associated with ARM-based
virtual machines. In classic VMs, they are just called IP addresses. Each VM
usually has two IP addresses—an internal, non-internet-facing address for
connecting to other services in the subscription, and an internet-facing
public IP or virtual IP address. Obtaining these IPs directly from Azure is
very beneficial for a penetration tester because having them allows for port
scanning and other directed attacks against virtual machines, without hav-
ing to scan an entire address range looking for devices. It also ensures that
the scans stay in scope, because public IP addresses in Azure’s space can be
dynamically reassigned to other Azure customers.

n o t e If you already have Azure portal or API access, why would you need to perform exter-
nal scans against the IP addresses of VMs? During a penetration test, customers
usually want a number of attack vectors examined, from insider threats to internet-
based “script kiddies.” Although an insider or nation state may be able to breach your
client’s network and gain portal access, lesser-skilled attackers probably cannot, so
it’s important to perform more traditional security assessments of anything exposed

Reconnaissance 57

to the internet. Additionally, Azure does not offer console-type access to VMs from the
portal. All access to the VM must be made through its network interface using remote
management services like Remote Desktop Protocol or SSH.

De f e nDe R’s t ip

All services on the internet are subject to near-constant port and vulnerability
scanning, brute-force password guessing, and other attacks. There are even
websites like Shodan (https://www.shodan.io/) that index port scan data and
make it publicly searchable. Whenever possible, try to mitigate these attacks
by turning off management services not in use, restricting access to them
through IP restrictions, and keeping VMs on private VLANs, shielded from the
internet.

Listing Internal IPs Used by Classic VMs

To obtain a list of internal IPs used by classic VMs, simply run Get-AzureVM
or azure vm show. The internal IP should be included in the ASM output of
both of these commands. Conversely, ARM’s CLI vm show command will
show only the public IP by default. Table 3-2 describes which IPs are dis-
played by the VM commands.

Table 3-2: IP Addresses Displayed by Tool

Command (mode) Internal IP Public IP

azure vm show (ASM) Shown Shown

azure vm show (ARM) Not shown Shown

Get-AzureVM (ASM) Shown Not shown

Get-AzureRmVM (ARM) Not shown Not shown

For ASM VMs, the CLI’s azure vm show command is a one-stop shop for
obtaining IP addresses. To use the CLI in ARM mode to show a list of all
network interfaces, enter azure network nic list. This should display the
interface’s name, resource group, MAC address, and location. Here’s how
to use it to display details for a specific NIC:

C:\>azure network nic show "resource_group_name" "NIC_name"

The output should also display details such as the IP address, whether it
is static or dynamic, and its associated VM or service.

In order to get dynamically assigned public IP information for a given
VM from the ASM PowerShell cmdlets, you will need to list the VM’s end-
points, as discussed in the next section. That said, if the subscription has

58 Chapter 3

any reserved (static) public IP addresses for ASM resources, the command
Get-AzureReservedIP with no switches should list them, as well as the service
to which they are tied.

And finally, to view IPs for ARM resources in PowerShell, use Get
-AzureRmNetworkInterface to display all the NICs in use in the subscription
for ARM resources, though this will display only private IPs. To view the
public IPs, use the Get-AzureRmPublicIpAddress cmdlet, which should show any
ARM resources using a public IP, the IP address, and whether the address is
dynamically or statically assigned.

Querying Endpoints with Azure Management Tools

Once you know the IP addresses within a subscription, you should deter-
mine the ports available at those IPs. In classic Azure VMs, a network port
is referred to as an endpoint—a service running on a host. For ARM VMs,
port management has been rolled into firewall management, but ASM
maintains them separately. Let’s look at how to enumerate ASM endpoints.

Although you could run a port scanner such as Nmap to gather this
information, doing so has several drawbacks:

•	 ASM-based VMs put Remote Desktop Protocol (RDP) on random, high-
numbered ports, so you’d need to scan all 65,535 ports to be sure you
find the right ones.

•	 Because the scan would take place over the internet, it would be consid-
erably slower than similar scans on a local network.

•	 A subscription could have dozens, or even hundreds, of hosts.

•	 You’d only find internet-facing ports allowed through the firewall, not
any services that may be exposed only to other hosts in the subscription
or within Azure.

For these reasons, it’s faster and more thorough to query the ports
directly using Azure management tools. To query endpoints in PowerShell,
use Get-AzureEndpoint, as shown in Listing 3-5. You must run it for each
classic VM and give it a PowerShell IPersistentVM object instead of the name
of a virtual machine. The Get-AzureVM cmdlet returns an object of this type.

 PS C:\> $vm = Get-AzureVM -ServiceName vmasmtest
 PS C:\> Get-AzureEndpoint -VM $vm

LBSetName :
LocalPort : 22
Name : SSH
Port : 22
Protocol : tcp
Vip : 52.176.10.12
--snip--

Listing 3-5: Obtaining endpoints for an ASM VM in PowerShell

Reconnaissance 59

At , we obtain a VM object using the VM’s service name and store it
in a variable. Next, we pass that object into the Get-AzureEndpoint cmdlet ,
which should return the port the server is listening on , the name of the
endpoint (often the name of the service being used, such as SSH, RDP,
or HTTP), the port exposed to the internet that is forwarded to the local
port , and the endpoint’s virtual IP address . The VIP is the public IP
address of the VM.

The Azure CLI also allows you to list endpoints in ASM mode. To
get a listing of endpoints with a particular VM name, run the following
command:

C:\>azure vm endpoint list "VM_name"

You only need to run this command once for each VM to see all its
endpoints.

Obtaining Firewall Rules or Network Security Groups
It can be really helpful to collect information on a VM’s network settings
from Azure’s firewall rules because they dictate which ports for a given VM
are accessible, and from where. These rules are separate from the VM’s
operating system–based firewall and act like the port-forwarding settings
on a router. Azure calls these firewall filters Network Security Groups (NSG)
in ARM and Network Security Groups (classic) for ASM.

Viewing ASM-based NSGs with PowerShell

For various reasons, classic VMs often don’t use NSGs. Nevertheless, it’s
worth knowing how to list both classic and ARM-based NSGs, because
knowing whether a firewall is in place can help avoid unnecessary port
scanning, and you might even report a lack of firewalls in your findings to
your client. In PowerShell, you can list classic NSG names and locations
with Get-AzureNetworkSecurityGroup and no arguments. To view the rules
inside a specific classic NSG, use the following command:

PS C:\> Get-AzureNetworkSecurityGroup -Detailed -Name "NSG_Name"

To view the details of every classic NSG, run this:

PS C:\> Get-AzureNetworkSecurityGroup -Detailed

Unfortunately, the output of this command won’t map the NSG back
to a virtual machine. To do so, get the VM object for the target virtual
machine and then run the following to display the NSG associated with
that VM (you’ll see an error if the VM doesn’t use an NSG):

PS C:\> Get-AzureNetworkSecurityGroupAssociation -VM $vm
 -ServiceName $vm.ServiceName

60 Chapter 3

Viewing ASM-based NSGs with the CLI

Azure CLI can also show classic NSG settings. To see all classic NSGs in
ASM mode, run the following command:

C:\>azure network nsg list

To see the rules in an NSG, run the following:

C:\>azure network nsg show "NSG_Name"

I have yet to find a way to map the association between an NSG and a
virtual machine using the CLI.

Viewing ARM-based NSGs with PowerShell

Run Get-AzureRmNetworkSecurityGroup to view ARM-based NSGs with
PowerShell. This should return every ARM NSG’s name, resource group,
region, and rules. This includes rules defined by the subscription admin-
istrator as well as rules that Azure automatically creates, such as “Allow
outbound traffic from all VMs to internet.” It can be helpful to see all these
rules (after all, the removal of the “allow outbound traffic to the internet”
rule could block your command-and-control traffic on a compromised
VM), but if you prefer, you can see only the custom rules for a particular
NSG with Get-AzureRmNetworkSecurityRuleConfig.

In order to use PowerShell to get the mapping of an ARM virtual
machine to an ARM NSG, you’ll need to find the interface for the desired
VM and then look up the NSG for that interface. You could nest all of the
following commands into one single line, but to improve readability and
avoid mistakes, I usually break it into a series of commands, as shown in
Listing 3-6.

 PS C:\> $vm = Get-AzureRmVM -ResourceGroupName "VM_Resource_Group_Name"
 -Name "VM_Name"

 PS C:\> $ni = Get-AzureRmNetworkInterface | where { $_.Id -eq
 $vm.NetworkInterfaceIDs }

 PS C:\> Get-AzureRmNetworkSecurityGroup | where { $_.Id -eq
 $ni.NetworkSecurityGroup.Id }
Name : NSG_Name
ResourceGroupName : NSG_Resource_Group_Name
Location : centralus
. . .
SecurityRules : [
 {
 "Name": "default-allow-ssh",
--snip--

Listing 3-6: Finding a Network Security Group for a given VM in PowerShell

At , we get the VM object and put it in a variable. At , we perform
a lookup to obtain the Network Interface object for that VM, using the
VM’s Network Interface ID property. Finally, we display the NSG using the

Reconnaissance 61

Network Security Group identifier stored in the Network Interface object .
Aside from replacing the VM resource group and name on the first line,
you can run everything else exactly as shown here.

Viewing ARM-based NSGs with the CLI

The CLI commands for viewing NSGs in ARM mode are almost identical
to those for ASM. The only difference is that the ARM command to show
a specific NSG requires the resource group name: azure network nsg show
"Resource_Group_Name" "NSG_Name".

Viewing Azure SQL Databases and Servers
SQL is frequently found in Azure, not only because many websites based in
Azure require it, but because installing SQL on an on-premises server can be
slow and has dozens of potentially confusing configuration options. However,
it takes only minutes to set up Azure SQL (the name of Microsoft’s cloud-
based SQL solution).

Azure SQL is separated into SQL servers and SQL databases. Although
a database lives within an Azure SQL server instance, the two items are
managed individually—a separation that might surprise experienced SQL
administrators.

Listing Azure SQL Servers

To list the SQL servers in a subscription (including database server name,
location, username of the administrator account, and version), run Get
-AzureSqlDatabaseServer with no parameters. Once you have the server infor-
mation, run

PS C:\> Get-AzureSqlDatabase -ServerName "Server_Name"

to see the names, sizes, and creation dates of every database within that
server.

Viewing Azure SQL Firewall Rules

To view any firewall rules applied to Azure SQL, run the following
command:

PS C:\> Get-AzureSqlDatabaseServerFirewallRule -ServerName "Server_Name"

By default, Azure prevents access to Azure SQL servers, except from
other Azure services. Although this is great for security, it frustrates devel-
opers who want to connect to databases from their workstations. In fact,
this was such a hassle that SQL Server Management Studio (the tool used
to manage SQL databases) added a prompt during sign-on to Azure SQL
servers that offers to automatically add the user’s current IP address to the
firewall rules. Not surprisingly, this annoys developers whose IP addresses
change frequently, so you will often find firewall rules in Azure SQL that

62 Chapter 3

allow connections from any IP address in the world, or at least anywhere
within a company’s network. Check the firewall to see what hosts you can
use to bypass the firewall and target the SQL server directly.

SQL ARM PowerShell Cmdlets

The ARM PowerShell extension has dozens more SQL-related commands
than ASM PowerShell does, though most deal with less common features or
are simply not relevant to a penetration tester. Perhaps the biggest hurdle
with ARM, though, is that the resource group field of the Get-AzureRmSqlServer
cmdlet is required. Fortunately, although this would normally mean that in
order to see all the SQL servers you would need to run the command for
each resource group in the subscription, PowerShell provides a shortcut.
Simply pipe the output of Get-AzureRmResourceGroup to Get-AzureRmSqlServer, and
you should see all the SQL servers, as shown in Listing 3-7.

PS C:\> Get-AzureRmResourceGroup | Get-AzureRmSqlServer

ResourceGroupName : Resource Group Name
ServerName : Server Name
Location : Central US
SqlAdministratorLogin : dba
SqlAdministratorPassword :
ServerVersion : 12.0
Tags : {}

Listing 3-7: Finding ARM-based SQL servers in PowerShell

Listing Databases in a Server

PowerShell provides an ARM command to show all the databases within a
SQL server, including the size, creation date, and region. To list the data-
bases in a server, run the following command:

PS C:\> Get-AzureRmSqlDatabase -ServerName "Server_Name"
 -ResourceGroupName "Server_Resource_Group_Name"

To view SQL firewall rules for ARM, as well as the starting and ending
IP addresses for each rule and its name, run this command:

PS C:\> Get-AzureRmSqlServerFirewallRule -ServerName "Server_Name"
 -ResourceGroupName "Server_Resource_Group_Name"

Finally, consider running the following to see if Azure’s threat detec-
tion tool is in operation:

PS C:\> Get-AzureRmSqlServerThreatDetectionPolicy -ServerName "Server_Name"
 -ResourceGroupName "Server_Resource_Group_Name"

Reconnaissance 63

This tool monitors for attacks such as SQL injection. You will want to
know if it’s running before launching a test that might trigger alerts.

De f e nDe R’s t ip

Be sure to take advantage of Azure’s security features. Regularly check to make
sure that no one has added an allow-all rule to your SQL firewall, and enable
new security features when they are added, such as SQL Threat Detection
(https://docs.microsoft.com/en-us/azure/sql-database/sql-database-threat
-detection/). Although no feature can guarantee the complete security of your
system, each added control provides another layer of protection and makes an
attack against your services that much harder. Make it hard enough that the
attacker decides to go target someone else.

Using the CLI for Azure SQL

You can use the CLI to gather information on Azure SQL, but keep in
mind that it only offers SQL commands when in ASM mode. Also, the
command to list databases within a SQL server instance requires the data-
base account credentials, and there is no command to view the state of
SQL Threat Detection (or any of the advanced SQL commands available
in ARM PowerShell).

To use CLI to view SQL servers within a subscription, including the
database name and the datacenter where it is hosted, run azure sql server
list. Then run

C:\>azure sql server show "Server_Name"

to view additional details such as the database administrator username
and server version. Finally, to check the firewall rules, enter azure sql
firewallrule list. You can display a specific firewall rule with the following
command:

C:\>azure sql firewallrule show "Server_Name" "Rule_Name"

Consolidated PowerShell Scripts
During a penetration test, I often have limited time to gather data, either
because I have dozens of subscriptions to review or because I’m using a
legitimate user’s system or credentials and the longer I use it, the greater
the chance of my being detected. Therefore, I like having all the commands
I need in one place in easy-to-run scripts.

In the sections that follow, I present scripts for both ASM PowerShell
and ARM PowerShell. It’s important to have both handy because credentials

64 Chapter 3

that work in one subscription model might not work in the other. Also, not
all systems will have the ARM cmdlets installed. When not constrained by
either limitation, I usually run both scripts. There’s always some duplica-
tion, but it’s better to get more information than to miss something.

I haven’t provided a script for the CLI tools because the PowerShell
output is much easier to work with in scripting form. Also, you’re far less
likely to be detected when penetration testing if you’re using the same tools
your target uses. Most developers will have the Azure PowerShell extensions
installed; far fewer will install the CLI.

You can download both scripts from the book’s website at https://
nostarch.com/azure/. You may, of course, need to customize them for your
particular scenario, adding authentication and such. (I find it’s easiest
to launch a PowerShell window, authenticate with the credentials I have
obtained, and then kick off the script.) You may also need to run the
Set-ExecutionPolicy -Scope Process Unrestricted command so the system
can run unsigned scripts, if you haven’t done so already in this PowerShell
window.

ASM Script
The script shown in Listing 3-8 iterates over the common ASM resources in
a subscription and then displays information about those services. It uses all
the ASM PowerShell commands discussed in this chapter.

Requires the Azure PowerShell cmdlets be installed.
See https://github.com/Azure/azure-powershell/ for details.

Before running the script:
* Run: Import-Module Azure
* Authenticate to Azure in PowerShell
* You may also need to run: Set-ExecutionPolicy -Scope Process Unrestricted

Show subscription metadata
Write-Output (" Subscription ","==============")
Write-Output ("Get-AzureSubscription -Current")
Get-AzureSubscription -Current

Display websites
Write-Output ("", " Websites ","==========")
$sites = Get-AzureWebsite
Write-Output ("Get-AzureWebsite")
$sites
foreach ($site in $sites)
{
 Write-Output ("Get-AzureWebsite -Name " + $site.Name)
 Get-AzureWebsite -Name $site.Name
}

View virtual machines
Write-Output ("", " VMs ","=====")
$vms = Get-AzureVM
Write-Output ("Get-AzureVM")

https://www.nostarch.com/azure/
https://www.nostarch.com/azure/

Reconnaissance 65

$vms
foreach ($vm in $vms)
{
 Write-Output ("Get-AzureVM -ServiceName " + $vm.ServiceName)
 Get-AzureVM -ServiceName $vm.ServiceName
}

Enumerate Azure Storage
Write-Output ("", " Storage ","=========")
$SAs = Get-AzureStorageAccount
Write-Output ("Get-AzureStorageAccount")
$SAs
foreach ($sa in $SAs)
{
 Write-Output ("Get-AzureStorageKey -StorageAccountName" + $sa.StorageAccountName)
 Get-AzureStorageKey -StorageAccountName $sa.StorageAccountName
}

Get networking settings
Write-Output ("", " Networking ","============")
Write-Output ("Get-AzureReservedIP")
Get-AzureReservedIP

Write-Output ("", " Endpoints ","===========")
Show network endpoints for each VM
foreach ($vm in $vms)
{
 Write-Output ("Get-AzureEndpoint " + $vm.ServiceName)
 Get-AzureEndpoint -VM $vm
}

Dump NSGs
Write-Output ("", " NSGs ","======")
foreach ($vm in $vms)
{
 Write-Output ("NSG for " + $vm.ServiceName + ":")
 Get-AzureNetworkSecurityGroupAssociation -VM $vm -ServiceName $vm.ServiceName
}

Display SQL information
Write-Output ("", " SQL ","=====")
$sqlServers = Get-AzureSqlDatabaseServer
Write-Output ("Get-AzureSqlDatabaseServer")
$sqlServers
foreach ($ss in $sqlServers)
{
 Write-Output ("Get-AzureSqlDatabase -ServerName " + $ss.ServerName)
 Get-AzureSqlDatabase -ServerName $ss.ServerName
 Write-Output ("Get-AzureSqlDatabaseServerFirewallRule -ServerName " + $ss.ServerName)
 Get-AzureSqlDatabaseServerFirewallRule -ServerName $ss.ServerName
}

Listing 3-8: Consolidated ASM PowerShell reconnaissance script

66 Chapter 3

ARM Script
Listing 3-9 shows the ARM version of Listing 3-8. It’s slightly longer than
the ASM version because it gathers more details about the subscription,
VMs, and network interfaces.

Requires the Azure PowerShell cmdlets be installed.
See https://github.com/Azure/azure-powershell/ for details.

Before running the script:
* Run: Import-Module Azure
* Authenticate to Azure in PowerShell
* You may also need to run Set-ExecutionPolicy -Scope Process Unrestricted

Show details of the current Azure subscription
Write-Output (" Subscription ","==============")
Write-Output ("Get-AzureRmContext")
$context = Get-AzureRmContext
$context
$context.Account
$context.Tenant
$context.Subscription

Write-Output ("Get-AzureRmRoleAssignment")
Get-AzureRmRoleAssignment

Write-Output ("", " Resources ","===========")
Show the subscription's resource groups and a list of its resources
Write-Output ("Get-AzureRmResourceGroup")
Get-AzureRmResourceGroup | Format-Table ResourceGroupName,Location,ProvisioningState
Write-Output ("Get-AzureRmResource")
Get-AzureRmResource | Format-Table Name,ResourceType,ResourceGroupName

Display Web Apps
Write-Output ("", " Web Apps ","==========")
Write-Output ("Get-AzureRmWebApp")
Get-AzureRmWebApp

List virtual machines
Write-Output ("", " VMs ","=====")
$vms = Get-AzureRmVM
Write-Output ("Get-AzureRmVM")
$vms
foreach ($vm in $vms)
{
 Write-Output ("Get-AzureRmVM -ResourceGroupName " + $vm.ResourceGroupName +
 "-Name " + $vm.Name)
 Get-AzureRmVM -ResourceGroupName $vm.ResourceGroupName -Name $vm.Name
 Write-Output ("HardwareProfile:")
 $vm.HardwareProfile
 Write-Output ("OSProfile:")
 $vm.OSProfile

Reconnaissance 67

 Write-Output ("ImageReference:")
 $vm.StorageProfile.ImageReference
}

Show Azure Storage
Write-Output ("", " Storage ","=========")
$SAs = Get-AzureRmStorageAccount
Write-Output ("Get-AzureRmStorageAccount")
$SAs
foreach ($sa in $SAs)
{
 Write-Output ("Get-AzureRmStorageAccountKey -ResourceGroupName " + $sa.ResourceGroupName +
 " -StorageAccountName" + $sa.StorageAccountName)
 Get-AzureRmStorageAccountKey -ResourceGroupName $sa.ResourceGroupName -StorageAccountName
 $sa.StorageAccountName
}

Get networking settings
Write-Output ("", " Networking ","============")
Write-Output ("Get-AzureRmNetworkInterface")
Get-AzureRmNetworkInterface
Write-Output ("Get-AzureRmPublicIpAddress")
Get-AzureRmPublicIpAddress

NSGs
Write-Output ("", " NSGs ","======")
foreach ($vm in $vms)
{
 $ni = Get-AzureRmNetworkInterface | where { $_.Id -eq $vm.NetworkInterfaceIDs }
 Write-Output ("Get-AzureRmNetworkSecurityGroup for " + $vm.Name + ":")
 Get-AzureRmNetworkSecurityGroup | where { $_.Id -eq $ni.NetworkSecurityGroup.Id }
}

Show SQL information
Write-Output ("", " SQL ","=====")
foreach ($rg in Get-AzureRmResourceGroup)
{
 foreach($ss in Get-AzureRmSqlServer -ResourceGroupName $rg.ResourceGroupName)
 {
 Write-Output ("Get-AzureRmSqlServer -ServerName" + $ss.ServerName +
 " -ResourceGroupName " + $rg.ResourceGroupName)
 Get-AzureRmSqlServer -ServerName $ss.ServerName -ResourceGroupName
 $rg.ResourceGroupName

 Write-Output ("Get-AzureRmSqlDatabase -ServerName" + $ss.ServerName +
 " -ResourceGroupName " + $rg.ResourceGroupName)
 Get-AzureRmSqlDatabase -ServerName $ss.ServerName -ResourceGroupName
 $rg.ResourceGroupName

 Write-Output ("Get-AzureRmSqlServerFirewallRule -ServerName" + $ss.ServerName +
 " -ResourceGroupName " + $rg.ResourceGroupName)
 Get-AzureRmSqlServerFirewallRule -ServerName $ss.ServerName -ResourceGroupName
 $rg.ResourceGroupName

68 Chapter 3

 Write-Output ("Get-AzureRmSqlServerThreatDetectionPolicy -ServerName" +
 $ss.ServerName + " -ResourceGroupName " + $rg.ResourceGroupName)
 Get-AzureRmSqlServerThreatDetectionPolicy -ServerName
 $ss.ServerName -ResourceGroupName $rg.ResourceGroupName
 }
}

Listing 3-9: Consolidated ARM PowerShell reconnaissance script

Be sure to check the book’s website (https://nostarch.com/azure/) for
updated versions of these scripts.

Summary
I’ve covered a wide range of commands that you can use to understand how
an Azure subscription is being used. I explained where to obtain Azure’s
PowerShell and command line tools. I discussed various authentication
methods to be used based on the type of credential you have captured. I
showed how to discover websites, virtual machines, storage accounts, net-
work settings, and SQL databases in a subscription. Finally, I provided you
with scripts you can use to quickly query these services.

I see these techniques as indispensable for any thorough penetration
test, as they help to draw a better picture of your client’s overall attack
surface: non-production systems can often be used as a foothold to access
production resources, yet they are often ignored in risk assessments. By
including the entire subscription in your test, and not just those resources
that are deemed most critical, you can significantly improve the value pro-
vided to your client.

In the next chapter, I’ll demonstrate some useful techniques for
exploiting Azure Storage accounts.

4
E x a m i n i n g S t o r a g E

Over the next several chapters, we dive
into specific Azure services and the pentest

techniques and tools unique to each. We’ll
begin with Azure Storage accounts, which are

used by several Azure services to store everything
from logs to virtual machine “hard disk” images.
Customers also use storage accounts for document sharing and backups—
essentially a cloud-based replacement for on-premises file servers. Of
course, centralizing all of this data in one place makes for a tempting
target for attackers.

Aside from the potential value of its data, a storage account is an ideal
target for several reasons; the most important is that every storage account
has two keys that grant full control to its data. These keys are shared by all
services using the storage account and all account administrators. To make
matters worse, most customers never change them.

These practices cause problems with repudiation, authorization, and
remediation (if an attack does occur). Storage account keys also might

70 Chapter 4

have a user-inflicted weakness: because so many applications require stor-
age access, developers often embed storage keys in their code or configu-
ration files without considering the possible security ramifications.

In this chapter, we first discuss the different authentication methods
available in Azure Storage. We then look at how to find these credentials in
source code, followed by a look at each of the popular tools used to access
and manage Azure Storage and how credentials can be stolen from them.
This is important, because you won’t know ahead of time what utilities
you’ll encounter on developer systems. Finally, we look at how to retrieve
different forms of data from storage accounts. This serves two purposes:
first, it demonstrates to clients that improperly secured cloud storage poses
a significant risk of a data breach; second, the data in the accounts can
sometimes be used to obtain additional access to an environment.

Best Practices: Storage Security
Improperly configured cloud storage has been mentioned in over two
dozen publicly disclosed data breaches between 2016 and 2018. Generally,
issues arise when developers write code that programmatically accesses a
cloud storage container, and the developer embeds the access key in their
source code and checks it in to source control. Since many companies use
services like GitHub to host their code, the developer might not realize
that the repository they checked the password into was publicly accessible.
Occasionally, breaches also occur when storage accounts are configured
to be readable by anyone, without requiring a password. Since malicious
actors routinely scan public repositories looking for passwords and stor-
age account URLs, trying to gain access, the time between a mistake and
a breach can be very short. But even when access to a repository is limited,
the number of people with access to the code is usually higher than the
number of people who are authorized to have access keys. In addition,
secrets and keys should never be stored in cleartext, even temporarily.

As an administrator, you can take several steps to protect against these
issues. First, regularly practice “rolling” or resetting the access keys for
your storage accounts and document any places where the keys need to be
updated. This way, if a real incident does occur, you can begin remediation
without worry ing about breaking dependent services.

Next, enable encryption of data in transit and at rest for your cloud
storage whenever possible. As of late 2017, Azure defaults to encrypting all
data at rest in Azure Storage, using a key that is managed automatically.
If desired, administrators can provide their own encryption key using the
storage account settings in the Azure portal. However, although this setting
protects the data on its storage medium, it doesn’t protect the data as it is
uploaded or downloaded from the storage account. For this, the storage
account must be configured to allow connections only over the HTTPS

Examining Storage 71

protocol. This can be done in the storage account configuration settings in
Azure portal by enabling the “Secure transfer required” option. It can also
be enabled via PowerShell:

PS C:\> Set-AzureRmStorageAccount -Name "StorageName" -ResourceGroupName
"GroupName" -EnableHttpsTrafficOnly $True

To ensure that storage accounts can’t be accessed by more people
than intended, regularly check the Access Type setting for your stor-
age containers. It should be set to Private unless you intend to allow
anonymous access. Additionally, you can use Shared Access Signature
(SAS) access tokens to specify more granular permissions within storage
accounts, including limiting access to specific time spans and IP ranges.
For more information about these permissions, see https://docs.microsoft
.com/en-us/azure/storage/blobs/storage-manage-access-to-resources/.

Lastly, perform regular code reviews to look for instances of develop-
ers checking secrets into source code. You might even consider using a code
analysis tool to automatically check for the presence of passwords whenever
new code is checked in. This can be helpful not only for finding storage
account keys but other credentials as well.

Accessing Storage Accounts
Azure Storage can be accessed through storage account keys, user creden-
tials, and Shared Access Signature (SAS) tokens, which are URLs with embed-
ded access keys that usually provide access to a limited subset of files and
may have other restrictions. Each type of credential has a different purpose,
and some are more useful to a penetration tester than others. Let’s examine
each of them.

Storage Account Keys
Using storage account keys, paired with the name of a storage account, is
the most desired and frequently used method of attack because they grant
full access to the entire storage account without the need for 2FA. Storage
accounts have only two keys—a primary and secondary—and all storage
account users share these keys. These keys don’t expire on their own, but they
can be rolled. Unlike passwords, which can be chosen by a user, storage keys
are automatically generated 64-byte values represented in base64 encoding,
which makes them easy to identify in source code or configuration files.

Storage keys are also supported by every Azure Storage utility and
storage-related API, making them highly versatile. Additionally, they are
the most common credential used by developers and are changed infre-
quently, so the chances of obtaining valid keys are good.

User Credentials
Obtaining user credentials is the next-best way in. Although role-based
permissions could limit a user account’s ability to perform certain actions

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-manage-access-to-resources/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-manage-access-to-resources/

72 Chapter 4

against a storage account, in practice, permissions this granular are rarely
implemented. The biggest downside to relying on these credentials is the
potential for encountering 2FA. If a user’s account has 2FA enabled, it’s
impossible to impersonate them without using one of the methods dis-
cussed in “Encountering Two-Factor Authentication” on page 26. Those
methods add additional complexity to an attack and decrease the odds of
success. An additional hurdle when employing user credentials is the lack
of tool support. Many of the Azure Storage utilities we’ll look at later in this
chapter only accept storage keys, so you may have to log in to the Azure por-
tal with the user credentials and copy the storage keys to use them.

SAS Tokens
SAS tokens are keys that grant only certain rights to a subset of objects in a
storage account. For example, SAS tokens are used to enable the “share a
file” options in OneDrive, SharePoint Online, Office 365, Dropbox, and
similar services.

Azure SAS tokens are formatted as URLs that point to Azure Storage
and contain a long string of parameters and a unique SHA256-hashed,
base64-encoded key that looks something like this: https://storagerm.blob.core
.windows.net/container/file.txt?st=2017-04-09T01%3A00%3A00Z&se=2017-04
-20T01%3A00%3A00Z&sp=r&sip=127.0.0.1-127.0.0.100 &sig=7%2BwycBOdz
x8IS4zhMcKNw7AHvnZlYwk8wXIqNtLEu4s%3D.

Penetration testers may find SAS tokens not particularly useful, not
only because they are usually scoped to a subset of files but also because
they may have assigned permissions (via the SP parameter) such as read-
only. SAS tokens can also be designated to work only from a specific IP
address or range (via the SIP parameter), so even if you get a SAS token,
it might only work from the machine for which it was originally created.
SAS tokens might also have designated start and end times (via the ST and
SE parameters, respectively) that limit a token’s lifetime to that period.

As if all this wasn’t discouraging enough, most Azure tools don’t sup-
port SAS tokens. This means you’ll likely be limited to using them through
a web browser. What’s more, if you somehow find a cache of these tokens, it
will take some time to go through them sequentially, thus using up valuable
testing hours. That said, if the prior two credential types aren’t available, a
usable SAS token is better than no access at all.

DE fE nDE r’S t ip

Microsoft provides detailed guidance on choosing the correct storage authenti-
cation options, common pitfalls, possible mitigations, and ways to recover from
a compromised credential at https://docs.microsoft.com/en-us/azure/storage/
storage-security-guide.

https://docs.microsoft.com/en-us/azure/storage/storage-security-guide
https://docs.microsoft.com/en-us/azure/storage/storage-security-guide

Examining Storage 73

Where to Find Storage Credentials
Now that you know the types of credentials to look for, let’s examine the
most common places where they can be found: source code and storage
management utilities. For source code sleuthing, you’ll need access to either
a developer’s machine or their source code control system. To get keys out
of storage utilities, you’ll need to find where these tools are installed; typi-
cally, this is on developer workstations. With access to these systems, you
can begin hunting for keys.

Finding Keys in Source Code
The most straightforward way to find storage keys is in the source code of
applications that use Azure Storage—usually in configuration files used
to build everything from an Azure website to custom business applications
that use the cloud to store data. You have several ways to quickly locate
storage keys in source code, but the method you should choose depends
on the type of code you find.

Microsoft provides libraries for .NET (C# and Visual Basic) and Java to
make it easier to access storage and other Azure features. Fortunately, the
name of functions used to authenticate to Azure Storage are consistent across
these libraries. Search for instances of the StorageCredentials class, and you’ll
likely find where any application uses storage keys. If that doesn’t work, try
searching for the library’s full name, such as Microsoft.WindowsAzure.Storage
.Auth in .NET or com.microsoft.azure.storage.StorageCredentials in Java.

If you suspect that a certain storage instance may use SAS tokens,
search code repositories for .core.windows.net, the domain used in all SAS
token URLs. (The base64 signature in SAS tokens should make them easy
to distinguish from any other windows.net domain references.)

Many code bases place storage account keys into configuration files,
especially when coupled with ASP.NET and Azure websites. ASP.NET and
Azure websites use files named web.config, whereas other websites often
use app.config files. Storage account keys in config files are often labeled
StorageAccountKey, StorageServiceKeys, or StorageConnectionString (the name
used in some Microsoft documentation sample code).

You can identify Azure Storage use within JavaScript files by scanning
for azure-storage.common.js. If you find this script reference in code, also
look for AzureStorage.createBlobService ; you’ll need it in order to authenticate
to Azure. (The JavaScript library allows the use of both storage keys and
SAS tokens, but greatly encourages the use of highly restricted SAS tokens
because users can view JavaScript code.)

Obtaining Keys from a Developer’s Storage Utilities
If you can’t find storage keys in source code, you may be able to recover
them from tools that the developers used to transfer files to Azure. To find
these keys, you first need to access a developer’s workstation and then look
for Azure Storage management applications. Once you have access, check
the application to see if it exposes saved keys in its user interface or if it
saves the keys in an insecure manner.

74 Chapter 4

In this section, we look at the tools most commonly used to manage
storage accounts to see if they’re susceptible to this attack.

DE fE nDE r’S t ip

Notice in the following discussion that only Microsoft Azure Storage
Explorer makes key recovery difficult for an attacker. If you must use a tool
to manage Azure Storage and if you have cached credentials on your
system, Microsoft Azure Storage Explorer is the safest choice.

Getting Keys from Microsoft Azure Storage Explorer

Azure Storage Explorer is well designed, with storage key protection as an
obvious goal. It offers no option to show a key once it’s saved in the inter-
face, and the encrypted keys are stored in Windows Credential Manager,
which makes recovering them directly impractical.

Despite these security features, all is not lost. Because Azure Storage
Explorer needs to decrypt the keys in order to provide them to Azure’s API
when transferring data, you can set a breakpoint in Storage Explorer’s code
on the line just after the keys are decrypted and then view them directly in
memory with the built-in debugger.

To perform this test, follow these steps:

1. Launch Azure Storage Explorer on the target engineer’s workstation.

2. Choose Help4Toggle Developer Tools. You should see the debugger
interface.

3. In the debugging window, click the Sources tab at the top of the screen
and then click the vertical ellipse menu and choose Go to file, as shown
in Figure 4-1.

Figure 4-1: The Sources view in Azure Storage Explorer

Examining Storage 75

4. In the file list dialog that appears, enter AzureStorageUtilities.js and
click the first entry to load the AzureStorageUtilities.js file, which contains
the logic to load the storage account keys.

5. Expand the debugger window so you can read the source code; then
find the function loadStorageAccounts(host, key), which is shown in
Listing 4-1.

 /**
 * Load the stored storage accounts:
 * Get account data from localStorage
 * Combine session key and account data as user account manager key
 * to get account key stored there.
 * @param host
 * @param key
 */
 function loadStorageAccounts(host, key) {
 --snip--
 switch (account.connectionType) {
 case 1 /* sasAttachedAccount */:
 account.connectionString = confidentialData;
 break;
 case 3 /* key */:
 account.accountKey = confidentialData;
 break;
 default:
 // For backward compatibility reasons if the
 // connection type is not set
 // we assume it is a key
 account.accountKey = confidentialData;
 }
 return account;
 });
 return storageAccounts;
 });
 }

Listing 4-1: Code snippet from Microsoft Azure Storage Explorer’s
loadStorageAccounts() function

6. Set a breakpoint in this function just before the account information
is returned to the application by clicking the line number for the line
return account; on the left side of the window, as shown in Figure 4-2.

7. Now, to trigger the application to reload the account information
so that the breakpoint will be hit, click Refresh All above the list
of accounts. The debugger should break in and pause the applica-
tion. Look for the account: Object variable on the right side of the
window (as shown in Figure 4-2) and click the arrow next to account
to expand it.

76 Chapter 4

Figure 4-2: Account object expanded in the debugger

The account object should list the accountKey as well as the accountName of
the first storage account registered in Azure Storage Explorer. To see if there
are multiple accounts, press F8 to continue execution. If there are more stor-
age accounts, the debugger should immediately break in again and update
the account object with the next account details. Keep pressing F8 until you
have recovered the connection information for each storage account.

Once the last storage account’s details are shown, press F8 again to
return the application to normal operation. Then remove your breakpoint
by right-clicking in the Breakpoints list in the pane on the right and choos-
ing Remove All Breakpoints. Finally, click Help4Toggle Developer Tools
to close the debugging tools and then exit the application.

Getting Keys from Redgate’s Azure Explorer

Redgate’s Azure Explorer gives you two ways to access the keys it contains:
a connection editor dialog and a Copy option in each account’s context
menu. To view account keys, launch Redgate’s Azure Explorer, open the
account, and then right-click the account to dig into its details, as shown
in Figure 4-3.

Figure 4-3: Redgate’s storage account menu

The Edit Connection Details option opens a dialog like the one shown in
Figure 4-4, where you can update the key associated with a storage account.
The dialog conveniently displays the current key in plaintext.

Examining Storage 77

Figure 4-4: Storage account key in Redgate’s Azure Explorer

The Copy Connection String option is also interesting. You can use it
to copy the key to the clipboard in SQL Connection String format, which
contains the key itself and the account name, and also indicates whether
the storage account should be accessed using SSL or an unencrypted con-
nection. Use this option to grab all required connection information for
an account and then paste it into a small document. Repeat this for each
listed account.

N o t e Because Redgate encrypts storage keys in Azure Explorer’s settings file %UserProfile
%\AppData\Local\Red Gate\Azure Explorer\Settings.xml, you will need to be
able to run Azure Explorer to recover the keys; you can’t simply take the XML file.

Getting Keys from ClumsyLeaf’s CloudXplorer

ClumsyLeaf Software makes three products for interacting with cloud-
based storage: CloudXplorer, TableXplorer, and AzureXplorer. All of these
tools allow you to manage not just Azure Storage but also storage offerings
from other providers, such as Amazon and Google.

CloudXplorer interacts with files and blob storage, whereas TableXplorer
provides a SQL-like interface for tabular cloud storage. AzureXplorer is a
Visual Studio plug-in to make interacting with cloud content easier during
development.

You can view and edit stored keys in CloudXplorer by right-clicking
a storage account in the left pane and choosing Properties, as shown in
Figure 4-5.

78 Chapter 4

Figure 4-5: Storage account context menu in
CloudXplorer

The Account window (see Figure 4-6) shows which Azure instance is
being used and whether SSL is enabled, and should allow you to copy both
the name and key of the storage account.

Figure 4-6: Account information in CloudXplorer

n o t E CloudXplorer’s Configuration4Export option exports all of the storage account con-
nection details, but they’re encrypted. You’re not likely to find that very useful.

Like Redgate, ClumsyLeaf also encrypts its account information within
an XML file. You’ll find it at %AppData%\ClumsyLeaf Software\CloudXplorer\
accounts.xml.

Examining Storage 79

Getting Keys from ClumsyLeaf’s TableXplorer

To use TableXplorer to view storage accounts, click Manage Accounts, as
shown in Figure 4-7, to open the Manage Accounts window.

Figure 4-7: The Manage Accounts button in
TableXplorer

The Manage Accounts window should display each account, as shown
in Figure 4-8. Azure Storage accounts are marked with a Windows logo and
Amazon accounts with an orange cube. Click the name of an account and
choose Edit.

Figure 4-8: Account list in TableXplorer

The Edit window will look just like the CloudXplorer window shown
earlier in Figure 4-6. Also, like CloudXplorer, TableXplorer encrypts the
keys in its configuration file, which is located at %AppData%\ClumsyLeaf
Software\TableXplorer\accounts.xml.

Getting Keys from Azure Storage Explorer 6

Azure Storage Explorer 6 is probably the oldest tool on this list. Although
it’s no longer maintained, it was the standard for years, and you’ll probably
find it on many developer systems for years to come.

80 Chapter 4

To view storage account settings through Azure Storage Explorer 6,
follow these steps:

1. Launch the application and choose an account from the
drop-down list.

2. Select the account and then choose Storage Account4View
Connection String, as shown in Figure 4-9.

Figure 4-9: The Storage Account menu in Azure
Storage Explorer 6

3. You should see a pop-up message box appear, displaying the SQL
Connection String–formatted account key, as shown in Figure 4-10.
Click OK to copy the value to the clipboard.

Figure 4-10: Storage account connection string in Azure
Storage Explorer 6

Prior to version 6 of Azure Storage Explorer, unencrypted creden-
tials were stored in %AppData%\AzureStorageExplorer\AzureStorageExplorer
.config, making this a valuable file to look for any time you suspect a
machine has been used to manage storage accounts. Beginning with ver-
sion 6, these settings were encrypted and moved to %AppData%\Neudesic\
AzureStorageExplorer\<Version>\AzureStorageExplorer6.dt1. However, because
Azure Storage Explorer is open source and because the same encryption

Examining Storage 81

key is used in every installation, it’s very easy to find the encryption key it
uses to “protect” these files online, as well as the encryption and decryp-
tion code. Of course, it’s easier to recover storage keys from the GUI, but
it’s helpful to have another option if you can’t launch applications on the
system you’re targeting.

Accessing Storage Types
Once you have access to a storage account, it’s time to find out what kind of
data you can obtain. First, you’ll need to determine which storage mecha-
nisms each account uses (blob, table, queue, and/or file), bearing in mind
that a single account can use more than one mechanism. Be sure to check
each account for each storage type.

Identifying the Storage Mechanisms in Use
Although you can check for storage account content using the Azure portal,
a penetration tester could face a couple of challenges with that method.
First, an account may have only a management certificate, which won’t pro-
vide direct portal access. Second, the Azure portal doesn’t display a sum-
mary of each storage type in one view; you have to click each account, click
to view any blobs in that account, and then click the button for files, and so
on. This process takes a while when subscriptions contain numerous storage
accounts.

The best way to identify the storage types in use is with PowerShell. For
example, the PowerShell script shown in Listing 4-2 will enumerate all stor-
age accounts in a subscription, check each storage mechanism for content,
and then display a summary of anything it finds.

ASM Storage Accounts
Write-Output ">>> ASM <<<"

 $storage = Get-AzureStorageAccount
foreach($account in $storage)
{
 $accountName = $account.StorageAccountName
 Write-Output "======= ASM Storage Account: $accountName ======="

 $key = Get-AzureStorageKey -StorageAccountName $accountName
 $context = New-AzureStorageContext -StorageAccountName `

 $accountName -StorageAccountKey $key.Primary
 $containers = Get-AzureStorageContainer -Context $context

 foreach($container in $containers)
 {
 Write-Output "----- Blobs in Container: $($container.Name) -----"

 Get-AzureStorageBlob -Context $context -Container $container.Name |
 format-table Name, Length, ContentType, LastModified -auto
 }
 Write-Output "----- Tables -----"

 Get-AzureStorageTable -Context $context | format-table Name -auto
 Write-Output "----- Queues -----"

 Get-AzureStorageQueue -Context $context |
 format-table Name, Uri, ApproximateMessageCount -auto

82 Chapter 4

 $shares = Get-AzureStorageShare -Context $context
 foreach($share in $shares)
 {
 Write-Output "----- Files in Share : $($share.Name) -----"

 Get-AzureStorageFile -Context $context -ShareName $share.Name |
 format-table Name, @{label='Size';e={$_.Properties.Length}} -auto
 }
 Write-Output ""
}
Write-Output ""

ARM Storage Accounts
Write-Output ">>> ARM <<<"
$storage = Get-AzureRmStorageAccount
foreach($account in $storage)
{
 $accountName = $account.StorageAccountName
 Write-Output "======= ARM Storage Account: $accountName ======="
 $key = Get-AzureRmStorageAccountKey -StorageAccountName `
 $accountName -ResourceGroupName $account.ResourceGroupName
 $context = New-AzureStorageContext -StorageAccountName `
 $accountName -StorageAccountKey $key[0].Value
 $containers = Get-AzureStorageContainer -Context $context
 foreach($container in $containers)
 {
 Write-Output "----- Blobs in Container: $($container.Name) -----"
 Get-AzureStorageBlob -Context $context -Container $container.Name |
 format-table Name, Length, ContentType, LastModified -auto
 }
 Write-Output "----- Tables -----"
 Get-AzureStorageTable -Context $context | format-table Name -auto
 Write-Output "----- Queues -----"
 Get-AzureStorageQueue -Context $context |
 format-table Name, Uri, ApproximateMessageCount -auto
 $shares = Get-AzureStorageShare -Context $context
 foreach($share in $shares)
 {
 Write-Output "----- Files in Share : $($share.Name) -----"
 Get-AzureStorageFile -Context $context -ShareName $share.Name |
 format-table Name, @{label='Size';e={$_.Properties.Length}} -auto
 }
 Write-Output ""
}

Listing 4-2: Listing storage account usage via PowerShell

This script is split into two parts: the first part searches ASM storage
accounts, and the second searches ARM.

We begin by getting a list of all ASM storage accounts in the subscrip-
tion . For each account, we obtain the key and then create a context for
that storage account —a PowerShell object that contains both the name
and key of the storage account. We can use this context when accessing a
storage account in the future.

Examining Storage 83

Next, the script begins examining the different storage types, as dis-
cussed in the following sections, before repeating the process for ARM
storage accounts.

Accessing Blobs
A blob is the most basic form of storage in Azure: it’s an unstructured col-
lection of bits that applications can use without restriction. Blobs are most
commonly used to store virtual hard disk files for Azure virtual machines.

You’ll find three kinds of blobs in Azure: page, append, and block. As a
pentester, it can be helpful to know the primary usage for each blob type so
you can make an educated guess about the contents of a given blob without
necessarily having to download it. In my assessments, I’ve found it can be
enormously frustrating to download a multi-gigabyte file over several hours,
only to discover it isn’t what I expected.

•	 Page blobs are made up of sets of bytes, referred to as pages. Each page
is 512 bytes, and a page blob itself can be up to 1TB in size. The total
size must be set when the blob is created, which means there is a strong
chance a page blob file will be quite large, but only a small fraction of it
will be data—the rest will likely be empty. Because page blobs are very
efficient at random reads/writes, they are the blob type used for hard
disk images.

•	 Append blobs are optimized for adding new data, but changes are prohib-
ited to existing data within the blob. They can be up to 195GB in size
and are ideal for log files. Log files may be interesting if you are trying
to identify additional user accounts, IP addresses, or servers that could
be related to your assessment; however, if you are just hoping to modify
logs to erase your tracks, append blobs won’t let you do so.

•	 Block blobs are the default type. They consist of one or more blocks of
bytes that can vary in size up to 100MB. Up to 50,000 blocks can be
placed in a single blob, and block blobs can grow as needed. This is
used for all other types of unstructured data.

Azure requires users to place all blobs in a container, which is like a file
directory, except that it can’t be nested. In other words, a container can
hold blobs, but not other containers. Each storage account can have an
unlimited number of containers, and each container can have any number
of blobs within it.

The script in Listing 4-2 obtains a list of all blob containers at
with the Get-AzureStorageContainer cmdlet and then prints a table for each
container using Get-AzureStorageBlob, with one line per blob . The table
includes the blob’s name, size, data type, and the date it was last changed,
as shown in Listing 4-3. Look through this list for files that sound useful,
ignoring any .status files and most logs, and focusing instead on documents,

84 Chapter 4

source code, and configuration files. Once you have a list of interesting
files, use one of the Azure Storage management tools to begin collecting
the files.

----- Blobs in Container: vhds -----

Name Length ContentType LastModified
---- ------ ----------- ------------
vmtest-vmtest-2019-03-12.vhd 939524096 application/octet-stream 6/18/2019 7:25:26 AM +00:00
vmtest.vmtest.vmtest.status 468 application/octet-stream 6/18/2019 7:25:11 AM +00:00

Listing 4-3: Output from blob commands

To view a blob’s content, Microsoft Azure Storage Explorer is probably
the best option for a penetration tester. It’s free, properly exposes all types
of blobs, and supports opening both ASM and ARM storage. Perhaps most
importantly, it allows access to storage accounts using a variety of sign-in
options, including the following:

•	 Shared Access Signature token

•	 Storage account key in SQL Connection String format

•	 Storage account name and key

•	 Username and password of a user with access to the subscription

The username and password login feature is especially nice because it
will populate the application with the storage accounts for every subscrip-
tion the user can access. You can also add more than one user account so
that you can view files for every compromised account simultaneously.

With all the storage accounts added to Microsoft Azure Storage
Explorer, expand the blob storage section under the desired storage
accounts; then browse the list of containers, select a file of interest, and
click the Download button to pull down a copy, as shown in Figure 4-11.

Figure 4-11: Downloading blobs from Microsoft Azure Storage Explorer

Examining Storage 85

Once you’ve retrieved the files, be sure to check them for additional
credentials. I’ve found a surprising number of secrets stored in Azure
Storage. This makes it a fantastic place to gain access to additional systems
or services, moving deeper into the target’s environment.

DE fE nDE r’S t ip

Azure Storage blobs aren’t an ideal place to store unencrypted secrets.
Because of the broad access and repudiation that access keys provide, secrets
should be kept elsewhere—or at the very least encrypted with a key not kept
in a storage account. Azure Key Vault, although not completely immune from
attack, as I’ll discuss in Chapter 7, is a far better choice for secret storage.

Accessing Tables
Tables provide storage of tabular data in Azure. They are great for keeping
semi-structured data like web service logs or website content databases, and
they are good alternatives to a resource-intensive, costlier database solution
like SQL Server.

Listing 4-2 calls the Get-AzureStorageTable cmdlet , which will
return all the table names in the provided storage context, as shown
in Listing 4-4. You can also use the only other cmdlet for Azure tables,
Get-AzureStorageTableStoredAccessPolicy, which displays any special permis-
sions for a table. I rarely find access policies in use, so I typically skip it.
With such limited PowerShell options, you need to use a stand-alone tool
to access a table’s data.

----- Tables -----

Name

TestTable
TransactionAudits
SchemasTable

Listing 4-4: Output from Get-AzureStorageTable command

Selecting the right tool is easy because there aren’t many options. The
primary ones are Microsoft Azure Storage Explorer and ClumsyLeaf’s
TableXplorer. In this case, I prefer TableXplorer, even though it’s not free-
ware, because it’s very quick, has options for exporting data, and provides a
query option, shown in Figure 4-12, that uses normal SQL syntax. This last
feature makes identifying data incredibly easy for anyone with a SQL back-
ground. Microsoft Azure Storage Explorer also has a query capability, but it
doesn’t work with SQL syntax and is slower than TableXplorer.

86 Chapter 4

In TableXplorer, you might find a number of tables, with names start-
ing with $Metrics, that don’t appear when using PowerShell. Azure auto-
matically generates and uses these tables to store details about the storage
account in which they reside. The dollar sign ($) at the beginning of the
name marks them as hidden, so PowerShell doesn’t enumerate them.

Figure 4-12: Using TableXplorer to query Azure Storage tables with SQL syntax

Data in these metrics tables track things like the total number of blobs
being stored and any transactions that have billing implications, such as
the addition or removal of data. These files typically have little value to an
attacker, unless they want to look for log entries that show activity they per-
formed against the storage account. Unfortunately, you can’t remove these
entries because the metrics tables are read-only.

Accessing Queues
Azure Storage queues provide a place to line up transactions and process
them sequentially as resources become available. Mainly software devel-
opers use queues; after all, few people other than developers need to worry
about processing data in order.

From a penetration testing perspective, I used to find queues boring.
They usually sit empty, waiting for a flood of work to come in, and are
drained shortly thereafter when the tasks are all handled. I changed my
opinion, though, when I saw the most beautiful, yet horrifying use of queues
imaginable: a queue to send unsigned commands to a server for execution.
Many security researchers will spend weeks or even months trying to find

Examining Storage 87

vulnerable software and develop remote code execution exploits—getting a pro-
cess on a different computer to run code under the attacker’s control. Here, it
wasn’t a vulnerability but rather an intentional feature!

Although that particular instance is an extreme case, queues actu-
ally lend themselves to this kind of behavior if a developer isn’t careful.
Developers generally use them as an input into some custom application,
like an order fulfillment system. The application’s developer might expect
that the queue only contains work items from another trusted system they
own, such as the order page on their website, so the developer neglects to
put in proper validation on the work item’s fields. That means an attacker
can inject their own custom messages into the queue, and the service that
processes them might not confirm that the data in those messages makes
sense. If these fields happen to contain the price of items for sale, the bank
account where payments should be sent, or what system commands the
computer processing the request should run, then the attacker has found
a very high-priority bug.

DE fE nDE r’S t ip

If you use a queue to transport confidential data or to send commands that
must come from a verified source, you should use asymmetric cryptography
to encrypt or sign the messages before they are placed in the queue. Then,
the receiver can decrypt the message or validate its signature to ensure it is
authentic and hasn’t been tampered with.

Queues are often used as a backend service that developers typically
use to facilitate communication between applications, so they have good
API support and interacting with them is limited without writing custom
applications. PowerShell only has two relevant cmdlets to display queue
information. One is Get-AzureStorageQueue, which I use in the script in
Listing 4-2 to enumerate the queues and their current message count, as
shown in Listing 4-5. The second is Get-AzureStorageQueueStoredAccessPolicy,
which is used for viewing SAS token permissions and restrictions, which are
rarely used. Note that there are no cmdlets to create or view items in the
queue.

----- Queues -----

Name Uri ApproximateMessageCount
---- --- -----------------------
testqueue https://storeasm.queue.core.windows.net/testqueue 0

Listing 4-5: Output from Get-AzureStorageQueue command

To actually see and insert messages into a queue, you must, once again,
turn to Microsoft Azure Storage Explorer. From its interface, select a storage

88 Chapter 4

account, expand the Queues list below that account, and then select a
queue. This will open a view that shows all currently queued messages, and
it allows you to view the contents of a message or insert a new message.
I suggest examining any existing messages to get a sense of what valid mes-
sages look like before trying to insert your own. If the queue is empty, try to
find the source code for the application that processes the messages to see
what it’s expecting.

W a r n i n g Azure queues, like queue data structures in other programming languages, have two
functions related to viewing a message. You can use PeekMessage to view the next mes-
sage in the queue without changing or removing it. On the other hand, GetMessage
actually takes the item from the queue and hides it from any other program that’s
using the queue. If you’re just using Microsoft Azure Storage Explorer, you don’t have
to worry about this, but if you develop a custom application to snoop on queues, call-
ing GetMessage might prevent Azure from processing a legitimate request (from the
queue). So be sure you fully understand these APIs before using them!

Accessing Files
The latest addition to Azure Storage’s offerings, called Azure Files, is a
cloud-based SMB file share service. It allows users to create shared direc-
tories and fill them with files, just like in an on-premises file server. This
is useful for migrating legacy applications that depend on SMB shares to
Azure. Azure Files allows connections from clients that support the SMB 2.1
or SMB 3.0 protocol.

While Azure Files is designed to be a drop-in replacement for an exist-
ing enterprise file server, it does have some limitations. First, any clients
connecting to it must be able to reach the service on the native SMB port:
TCP 445. This might not sound like a big deal, but some corporate net-
works block TCP 445 traffic in both directions, because file shares are
normally considered an internal resource. However, the biggest differ-
ence from a traditional Windows file server is the lack of user accounts and
permissions.

On a normal SMB share, a user can assign Read, Change, and Full
Control permissions to any number of users or groups. Additionally, a user
can specify file system–level permissions on files within these shares to fur-
ther restrict access.

Azure Files is different. By design, its shares have only one user and it
isn’t configurable. The share’s user is AZURE\Name_of_Storage_Account, and the
password is the primary key for that storage account, once again highlight-
ing the importance of protecting storage account keys from unauthorized
access. So to get full access to an Azure Files share named myshare within a
storage account named mysa, you would run the following from a Windows
command line:

net use * \\mysa.file.core.windows.net\myshare /u:AZURE\mysa Primary_Key

Examining Storage 89

n o t E Connections from remote machines to Azure Files is limited to Windows hosts that
support SMB 3.0 because Linux, and Windows versions prior to Windows 8,
don’t support encrypted SMB connections. Linux and older Windows versions can
connect to Azure Files, but only if they are virtual machines running within Azure
and are in the same Azure region.

To enumerate the shares, use the Get-AzureStorageShare cmdlet shown in
Listing 4-2 at . For each share, you can use the cmdlet Get-AzureStorageFile
to see a list of files within that share. At in Listing 4-2, I piped the output
of Get-AzureStorageFile to the format-table command—with some rather
ugly parameters—to display each file on one line and to include the name
of the file with its size in bytes. Because the file size is buried in the proper-
ties of each file object (and is called “Length”), you need to display it using
PowerShell’s hash table syntax. The -auto switch adjusts the column widths
of the table automatically. The resulting output is shown in Listing 4-6.

----- Files in Share : asmshare -----

Name Size
---- ----
testfile.txt 33

Listing 4-6: Output from file commands

Aside from using PowerShell and the built-in SMB connectivity of
Windows, you can also view Azure Files through Microsoft Azure Storage
Explorer (see Figure 4-13).

Figure 4-13: Accessing Azure Files using Microsoft Azure Storage Explorer

Microsoft Azure Storage Explorer doesn’t provide any more function-
ality than PowerShell and the Windows SMB client in tandem, but it does
get around the TCP 445 firewall issue by using Azure’s APIs for access
instead of connecting directly through SMB. It also has a handy button

90 Chapter 4

labeled Connect VM that will automatically create and display the properly
formatted net use SMB command so you can connect to the share using
Windows.

Summary
In this chapter, we discussed some design limitations in the authentica-
tion design of Azure Storage as well as the different types of credentials an
attacker can use to access Azure Storage: storage account keys, usernames
and passwords, and Shared Access Signatures. Next, we examined places
where attackers often find credentials, such as source code, configuration
files, and stored within a number of storage management tools. Then,
we discussed the different types of storage available in Azure, including
blobs, tables, queues, and files, and how an attacker can access each of
them. Using this information, you can retrieve all of the data from a tar-
get’s storage account, which often includes documents, log files, hard disk
images, and source code.

In the next chapter, we’ll take a look at the biggest user of Azure
Storage: Azure Virtual Machines.

5
T a r g e T i n g V i r T u a l M a c h i n e s

Every penetration tester is likely to
encounter numerous virtual machines

(VMs) in Azure. As you’ll learn in this
chapter, attackers can leverage Azure Storage

as a vector to steal secrets from, and take control of,
Azure virtual machines. With the right level of access
to these systems, an attacker could take complete
control over any service running on the VMs and
surreptitiously collect data about the users who con-
nect to them.

To demonstrate this, I begin with a look at how to obtain the virtual
hard disk (VHD) images for virtual machines, without ever gaining Azure
portal access. Once a copy of the VM’s VHD is obtained, I explain how to
extract important data. Finally, I show you how to leverage the VM pass-
word reset option in the Azure portal.

92 Chapter 5

Best Practices: VM Security
Virtual machines are one of the most common cloud workloads, because
they allow businesses to quickly migrate on-premises servers into the cloud.
Although VMs are a great way to take advantage of the benefits of the cloud
with limited engineering effort, this approach can lead to security problems
if companies don’t fully consider the new threats they might encounter as a
result of such a move.

Most importantly, administrators of on-premises servers often take
for granted the firewalls and other security appliances on the border of
the corporate network. By default, cloud-hosted VMs are internet-facing,
so every open port must be carefully considered, with only the minimum
number of services exposed, as each is a potential target for attack. Use net-
work security groups in addition to the VM’s host firewall to restrict access
to all unneeded ports. Additionally, consider using virtual networks that
aren’t exposed to the internet for those VMs that host services that need to
be accessed only from other cloud resources.

If you do expose a management service to the internet, such as RDP
or SSH, you can reduce the risk of successful password spray or brute-force
password attacks by ensuring that user accounts on the system use unusual
account names (avoid common privileged account names like administra-
tor, admin, and root) and strong passwords or, if possible, certificate-based
or multi-factor authentication. Encourage the use of a password man-
ager so users don’t balk at remembering strange usernames and complex
passwords.

Next, whenever possible, utilize full disk encryption on your VMs to
protect any data that resides on them. This prevents offline VHD analysis,
as described in “Exploring the VHD with Autopsy” on page 95. Azure
Disk Encryption is a convenient way to encrypt VHDs. It utilizes Key Vault
to store the encryption keys for the disk, so you don’t need to worry about
managing the keys. It is a free service in Azure and is available for most
VM pricing tiers.

Finally, make sure that all relevant events for the VM are being moni-
tored. Enabling Azure’s VM logs and including them in your blue team’s
security log analysis tools is a good start. However, even more events can be
detected by using Azure Security Center (ASC) and Operations Management
Suite (OMS). ASC monitors VMs for known threats, while OMS provides
detailed logs for any system where its agent is installed. Both solutions are
described in detail in Chapter 8.

Virtual Hard Disk Theft and Analysis
Because one can obtain credentials for Azure Storage without full access to
a subscription (as discussed in Chapter 4), an attacker may be able to con-
trol a running VM with just a storage account key. To do this, the attacker
needs to obtain a VHD, retrieve passwords or certificates stored on the
VHD, and then use those secrets to access the VM. Let’s start by looking at
how a penetration tester can acquire a copy of a VM’s VHD.

Targeting Virtual Machines 93

Downloading a VHD Snapshot
In order to download the disk image, you’ll need the key for the stor-
age account that contains the desired VM’s VHD. This can be obtained
directly from the Azure portal or through Azure PowerShell’s cmdlet Get
-AzureRmStorageAccountKey if you have subscription access. Alternatively, you
can use any of the storage key recovery methods described in Chapter 4
if you don’t have subscription access. Once you’ve procured storage cre-
dentials, launch either Microsoft Azure Storage Explorer or ClumsyLeaf
CloudXplorer. These are the only two tools that can create snapshots
of files in Azure Storage. I’ll show how to use Microsoft Azure Storage
Explorer because it is the free option.

n o T e If you attempt to download a file from Azure while it’s in use, such as a VHD being
used by a running VM, the download will be interrupted and the file will be cor-
rupt or incomplete. The snapshot API creates a consistent (meaning non-corrupt)
point-in-time duplicate of a file that you can copy. Because you can’t tell if a VHD
is in use, you should always assume that it is and make a snapshot.

Follow these steps to download a snapshot in Microsoft Azure Storage
Explorer:

1. Click the VHD file you want to copy and then click the Make Snapshot
button in the ribbon menu, as shown in Figure 5-1.

Figure 5-1: Creating a snapshot for a VHD in Microsoft Azure Storage Explorer

2. Click the Manage Snapshot button. You should see all of the selected
file’s snapshots in the file list. Their names should start with the name
of the VHD, followed by a date and time in parentheses.

3. To save the snapshot to your PC, select the snapshot and click
Download in the ribbon.

Be sure to delete the snapshot from the storage account once you’ve
downloaded the VHD snapshot. Not only might a user notice the duplicate
file, but the duplicate also takes up additional space in the storage account,
which will lead to additional charges on the subscription’s monthly invoice.

94 Chapter 5

Although having the snapshot around for an hour or two while copy-
ing the VHD will likely go unnoticed, a full month’s worth of charges for
potentially hundreds of gigabytes of blob storage will stand out to a good
accountant.

De f e nDe r’s T ip

Azure Storage Analytics logging will record Azure Storage activity for blobs,
queues, and tables. This includes successful and failed authentication attempts,
uploads, downloads, deletions, and snapshot operations. Be sure to enable it
and review this data for unusual activity. For more information see https://docs
.microsoft.com/en-us/rest/api/storageservices/enabling-storage-logging-and
-accessing-log-data/.

Also, billing data can be a surprisingly helpful tool to alert you if someone
is exploiting your subscription. If you expect a subscription’s usage to be con-
stant from month to month, a sudden change in cost warrants an investigation.
The cause might be something innocuous, like a change in Azure’s rates, but
it also might be someone running additional services in your subscription for
nefarious purposes!

To delete snapshots in Microsoft Azure Storage Explorer, click the
snapshot in the list of files to highlight it and then click the Delete button
on the ribbon. If you don’t see any snapshots listed, click Manage Snapshot
in the ribbon menu first.

Retrieving a VHD’s Secrets
Once you have a copy of the VHD on your computer, you can review it for
useful information. The files to look for will depend on the guest’s oper-
ating system, but the goal is the same: identify information that is either
valuable as a penetration test finding in its own right (for example, not-yet-
released financials) or information that furthers your access to target sys-
tems (for example, passwords).

Finding a password for the same VM that uses the stolen VHD is quite
desirable. Although having that credential might seem moot with the VHD
in hand, once you’ve found a password, you can perform many useful
actions against a running VM that would not work against a static VHD
copy. For example, with access to a VM, you could run Mimikatz to look
for credentials you haven’t yet obtained. You could also modify a running
service on the VM to covertly forward information to you as it arrives. You
could even use it to send phishing emails, because users are typically more
trusting of links to a server that they already know. The possibilities are lim-
ited only by your imagination.

https://docs.microsoft.com/en-us/rest/api/storageservices/enabling-storage-logging-and-accessing-log-data/
https://docs.microsoft.com/en-us/rest/api/storageservices/enabling-storage-logging-and-accessing-log-data/
https://docs.microsoft.com/en-us/rest/api/storageservices/enabling-storage-logging-and-accessing-log-data/

Targeting Virtual Machines 95

Reviewing the contents of VHD files can become a lengthy exercise
in computer forensics, depending on the number of VHDs you obtain.
Because you likely won’t have time to dig through every file in every disk
image, let’s focus on a few key areas that are usually the most fruitful.

Exploring the VHD with Autopsy
Before you can review the contents of a VHD, you have to find a way to
open it. If you are using Windows 10 and your target VM is also running a
version of Windows, you should be able to right-click the VHD and select
Mount to mount the VHD as a new virtual disk in Windows Explorer. If
you’re running Linux and you have a VHD library installed, you should
be able to use the mount command to attach the VHD. However, I prefer to
explore the VHD using disk forensic tools like Autopsy. Using a disk foren-
sic program has several advantages over native mount options:

Broad disk format support Whereas Windows can only mount disk
images in NTFS and FAT formats, forensic tools can open dozens of
formats—even when running on Windows. And on Linux, forensic tools
often do a better job reading from unusual formats than Linux itself does.

Better protection from malware When mounting an untrusted file
system directly into your system, you run the risk that any malware on
the VHD could end up infecting your host. By using the forensic tool to
extract only a few specific files of interest, you greatly reduce that risk.

Protection for the integrity of the VHD Forensic tools are designed to
mount disk images in read-only mode, which prevents you from acciden-
tally modifying or deleting files in the VHD. This not only prevents mis-
takes, but can also help quell skepticism when you present your findings.

Ability to recover deleted files Forensic tools specialize in re-creating
files in disk images that users have deleted but that haven’t yet been
overwritten by new data. You might come across some very interesting
files that wouldn’t appear with a native mount command.

My go-to forensic tool is the free, open source Autopsy (http://www
.sleuthkit.org/). You can run it on Windows, Linux, and macOS. Although it
lacks some of the advanced features and polish of commercial forensic pro-
grams, it’s more than sufficient for penetration testing, and it avoids the
high cost associated with niche commercial tools.

Importing the VHD
Regardless of your computer’s operating system or that of the VHD, the
instructions for using Autopsy to import the VHD for examination are as
follows:

1. Start Autopsy and choose Create New Case on the Welcome screen.

2. Give the case a name (use the name of the VM) and select a directory
for Autopsy to save its working files. Click Next.

96 Chapter 5

3. Leave the Case Number and Examiner fields blank and then click
Finish to open the Add Data Source Wizard.

4. On the Add Data Source window, browse to the downloaded VHD,
select it, and click Next.

5. The Configure Ingest Modules screen, depicted in Figure 5-2, allows
you to select what post-processing Autopsy will perform on the VHD,
such as creating a search index and thumbnails of all pictures. Make
your choices and then click Next, followed by Finish on the next
screen.

Figure 5-2: Selecting ingestion options in Autopsy

n o T e Ingestion is the process used by forensics software to automatically scan through the
contents of the disk being examined and call out items of interest for the examiner.
Autopsy provides a number of preconfigured ingestion options, such as email and
credit card number identification and photo retrieval. It also supports custom filters
so examiners can add their own.

At this point, you should be at the main Autopsy interface, as shown
in Figure 5-3. Double-click the VHD file in the Directory Listing area and
you’ll see a list of partitions within the VHD, including unallocated parti-
tions that represent unused space in the virtual disk.

Targeting Virtual Machines 97

Figure 5-3: Navigating the disk image using Autopsy

If Autopsy fails to load the VHD, either the VHD is corrupt and should
be downloaded again, or the VM owner has enabled Azure Disk Encryption,
in which case there’s nothing else you can do here. To check if encryption is
enabled, try mounting the VHD on a Windows system using PowerShell:

PS C:\> Mount-DiskImage -ImagePath C:\temp\file.vhdx -StorageType VHDX
 -Access ReadOnly

If the image is corrupt, PowerShell will display the error The file or
directory is corrupted and unreadable. If it is encrypted, a new Windows
Explorer window will open attempting to display the VHD’s contents, but
will report that the drive is not accessible.

De f e nDe r’s T ip

Azure Disk Encryption allows you to encrypt the contents of your VHDs
in Azure Storage. It leverages BitLocker for Windows VMs and DM-Crypt for
Linux VMs in order to fully encrypt the virtual disk, so if the VHD is removed
from Azure, you won’t be able to read its contents. The encryption keys for the
VHD are stored in Azure Key Vault. Note that to use Azure Disk Encryption,
you must be using Standard or Premium tier VMs and the VMs must be ARM-
based. You can learn more about Azure Disk Encryption at https://docs
.microsoft.com/en-us/azure/security/azure-security-disk-encryption/.

When the VHD loads, double-click the first partition not labeled
unallocated. You should see a list of the files on the VHD, as shown in
Figure 5-4.

https://docs.microsoft.com/en-us/azure/security/azure-security-disk-encryption/
https://docs.microsoft.com/en-us/azure/security/azure-security-disk-encryption/

98 Chapter 5

Figure 5-4: Examining a VHD in Autopsy

From within this interface, browse through the file system in search of
interesting files. You can use the built-in hex viewer in the lower portion of
the screen to preview files. To take a deeper look, select the file, right-click
it, and then select Extract File(s) to save the file to your host system.

Now let’s look at some of the most interesting files to seek out on
Windows and Linux VHDs.

Analyzing Windows VHDs
When I’m analyzing a VM’s disk, my first priority is to collect creden-
tials. When analyzing a Windows VHD, I start with the Security Account
Manager (SAM) database at \Windows\System32\config\SAM. The SAM stores
password hashes for all local, non-domain users on a system, such as the
local administrator account. Windows uses an encryption key, called a
Syskey, to protect the SAM. You can find this key in \Windows\System32\
config\SYSTEM.

Here’s how to decrypt the SAM file and obtain the hashes:

1. Extract the SYSTEM and SAM registry hive files from the VHD to your
computer using Autopsy.

2. Launch Cain & Abel (available from http://www.oxid.it/cain.html).

3. Click the Cracker tab.

4. Click FileAdd to list.

5. Select the Import Hashes from a SAM database option.

Targeting Virtual Machines 99

6. Click the browse button (...) next to SAM Filename and select the
extracted SAM file.

7. Click the browse button next to Boot Key and select the extracted
SAM file.

8. On the Syskey Decoder box that opens, click the browse button and
select the SYSTEM file you extracted.

9. Highlight and copy the displayed boot key.

10. Close the Syskey Decoder box and then paste the key into the Boot Key
field.

11. Click Next.

You should see the hashes for every account on the system, as shown in
Figure 5-5. (We’ll look at what to do with these hashes in “Password Hash
Attack Tools” on page 103, including how Cain & Abel can use them to
obtain cleartext passwords.)

Figure 5-5: Hashes in Cain & Abel

Aside from passwords, when examining a VHD I’m also interested in
source code, configuration files, and documents. What you’ll find depends
on how the VM is being used and what software is installed on it. Check
these locations, if present, for a good chance of finding valuable content:

•	 The \InetPub directory for website source code and configuration files
(usually web.config). These may contain passwords and other secrets.

•	 Each user’s home directory within \Users—especially their Documents
folder for specifications and deployment documents about the target
environment; Desktop folder for documents, keys, and notes; Downloads
folder for hints about what tools may be used on the VM; and AppData\
Roaming folder for Internet Explorer, Firefox, and Chrome subdirecto-
ries that contain web history, cookies, and saved passwords.

•	 Directories that SQL uses.

•	 Any directories that Azure management tools use.

100 Chapter 5

•	 Temp directories for output of scheduled tasks, test scripts, and other
random gems.

•	 Directories containing backups.

Also, perform a full-VHD search for file extensions like *.pfx for cer-
tificate private keys; *.doc, *.docx, *.xls, *.xlsx, *.ppt, and *.pptx for Microsoft
Office files; *.bak for backups; and *.txt for notes, which will sometimes
contain passwords. You might also want to search for files that password
managers use, like *.kdx and *.kdbx for KeePass, *.psafe3 for Password Safe,
and *.dash or *.dashlane for Dashlane. Finally, find copies of any scripts not
included with the operating system, like *.bat, *.cmd, and *.ps1 from any
directory besides \Windows, and see what they are used for.

Analyzing Linux VHDs
To retrieve password hashes from a Linux VHD, export the /etc/passwd and
/etc/shadow files to get a list of users and their password hashes. It’s also
a good idea to copy /etc/group and /etc/gshadow to determine what group
memberships, and what rights, user accounts have.

The /etc/samba, /etc/ssl, and /etc/ssh directories should contain configu-
ration files and certificates that the system uses. Additionally, /etc/hostname
will contain the name of the VM, /etc/fstab will list any other mounted disks
in the VM, and /etc/hosts may show static name-to-IP mappings of other
servers that the VM interacts with.

It’s a good idea to try to retrieve source code and configuration files
for any websites hosted on the VM because they may contain secrets. This is
especially true of Apache’s .htpasswd and .htaccess files, which control access
to web content. Common locations for these files include /var/www, /usr/
share/nginx, and /httpd.

Users’ home directories are another good source of information; these
directories are typically found in /home and also /root. Saved Secure Shell
(SSH) key files for connecting to remote systems and the history of com-
mands, usually named .bash_history, are particularly interesting. Command
histories will often have the names of other servers worth investigating.
Look for commands like ssh, telnet, scp, and smbclient, as well as for a valid
username for those systems.

Even though Linux doesn’t use file extensions as universally as Windows
does, you should perform a file extension search on Linux VHDs because
many users and applications use extensions. Scan for certificate-related files
(*.pfx, *.p12, *.jks) as well as shell scripts (*.sh) and text files (*.txt). You might
also find something interesting in database files such as *.sql, *.db, and *.myd.

Cracking Password Hashes
Once you successfully obtain password hashes from either Linux or Windows
VMs, you will need to recover their plaintext values in order to use them.
Hashes are meant to be one directional, meaning that you should not be able
to determine the actual plaintext password from only the hash. But as you’ll

Targeting Virtual Machines 101

see in this section, there are a few possible ways to retrieve passwords from
hashes, including dictionary attacks, brute-force attacks, hybrid attacks, and
rainbow table attacks.

Dictionary Attacks
In a dictionary attack, an attacker compiles a list of common words or
phrases and then hashes each item in the list with the same hashing algo-
rithm the target server’s password system uses. Then, the attacker compares
the hash of each dictionary word to the password hash list and displays the
matches.

Dictionary attacks are great if you have a list of passwords that the
target organization commonly uses, if you suspect users have simple one-
word passwords that would appear in your compiled list of English words,
or if you have a large password dictionary. You can usually find these large
dictionaries online after criminals have compromised a popular website
and released the stolen passwords. A good source is https://github.com/
danielmiessler/SecLists/.

W a r n i n g Always check with the legal teams at your company and at your target company before
using leaked password lists. Simply because they are publicly available does not mean
that you are free to use them. Some organizations might consider these files stolen
property and deem them off limits. If you intend to use these lists, consider mention-
ing that fact in your rules of engagement.

Brute-Force Attacks
When brute-forcing passwords, you generate every possible password com-
bination of letters, numbers, and special characters and then hash that
until a match is found. This method is very time consuming and is generally
not practical for passwords greater than about eight characters in length,
but it may find a short password that an attacker wouldn’t find in a typical
dictionary, such as f8i!R+.

Hybrid Attacks
Hybrid attacks combine dictionary and brute-force attacks to try to recover
complex passwords quickly. In this method, an attacker combines a base
dictionary word with a sequence of characters, tests the result against the
hash, and then moves on to the next word. For example, a password like
hippopotamus200 would likely not show up in any dictionary word list, and
brute-forcing a 15-character password would take an unreasonable amount
of time. However, a hybrid attack that uses one English word followed by
one to four numbers would likely find this password in a matter of hours or
days. The biggest drawback to a hybrid attack is that you need some idea of
what the password’s format looks like. For example, the “word plus one to
four characters” paradigm would not successfully find 200hippopotamus.

https://github.com/danielmiessler/SecLists/
https://github.com/danielmiessler/SecLists/

102 Chapter 5

Rainbow Table Attacks
A rainbow table attack is a bit like a brute-force attack, where the attacker
computes and stores all the hashes ahead of time to match against captured
target hashes. However, truly storing every possible hash for a password of a
given length would require a massive amount of space, making it impractical.
To avoid this problem, the designers of rainbow tables perform a complex
cryptographic operation (called a reduction function) that chains hashes
together and only stores the beginning and end of each chain. (To learn how,
see the original paper on the topic by Philippe Oechslin at https://lasec.epfl.ch/
pub/lasec/doc/Oech03.pdf.)

In order for an attacker to use the rainbow table, a program takes in
the target hash and begins computations against the precomputed table
by passing the captured hash through the reduction function and seeing
if the result matches the end of any chain. If so, it takes the value at the
beginning of that chain and begins hashing and then reducing from the
start of that chain until the value that created the original hash is found.
If the reduced version of the captured hash doesn’t match the end of any
chain, it is passed through the hash and reduction functions, and the cycle
is performed again until the correct chain is identified.

 Attackers optimize rainbow tables for either speed or size: a smaller
rainbow table will take longer to return the password (though it will still be
considerably faster than brute-forcing), whereas a larger table will return
the result faster but consume more disk space.

Although rainbow tables can be considerably faster than the other
attacks discussed in this section, they have three major drawbacks. First,
you must precompute them, so they require more planning and prepara-
tion than the other methods. Second, a rainbow table is only good for one
hash format, such as MD5. This means that you’ll need different rainbow
tables for each type of hash you encounter. At a minimum, expect to find
LM and NTLM hashes on Windows, and MD5 and SHA1 hashes on Linux.
Third, they are ineffective against salted hash formats.

Weaknesses in Windows Password Hashes
For Azure-based Windows VMs, Azure mandates that the username not be
admin or administrator, that the password be between 12 and 123 characters
in length, and that the password include at least three of the four charac-
ter types: lowercase letters, uppercase letters, numbers, and symbols. This
would normally make brute-force attacks infeasible except that Windows
stores passwords in both NTLM and LM hash formats for compatibility rea-
sons. Early versions of Windows use the LM hash format whereas later ones
use the more secure NTLM. LM has a number of weaknesses:

•	 Passwords are padded with null characters as needed to get a total
length of 14 characters, which is then split into two equal parts. Both
parts are hashed separately and then concatenated to form the final
LM hash value, so an attacker only needs to attack the hashes for two
7-character strings, which can be done in parallel.

https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf
https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf

Targeting Virtual Machines 103

•	 Passwords are limited to 14 characters.

•	 Letters in passwords are converted to uppercase before hashing, mak-
ing them case insensitive.

If a user has a password that is fewer than 15 characters on Windows,
it is likely stored in both NTLM and LM formats in the SAM. When a
password is seven characters or fewer, LM sets the second half of the LM
hash to AAD3B435B51404EE (the hashed value of 7 null bytes), so an
attacker only has to crack the first half. For passwords over 14 characters,
Windows doesn’t store an LM hash and instead stores a default value of
AAD3B435B51404EEAAD3B435B51404EE. Windows uses this same hash
value for accounts with no password at all, so if you come across it, try that
account with a blank password and you might just get lucky!

Because any password stored with an LM hash is essentially just the
hash of two seven-character passwords and because neither hash contains
lowercase characters, the keyspace that must be attacked for an LM hash is
rather small. Therefore, an attacker can very quickly recover any password
stored in LM format. Once an attacker cracks an LM hash, the result-
ing password might not be the account’s actual password, due to the case
insensitivity of LM. Thus, an attacker will need to perform a short brute-
force test of each of that password’s case permutations against the NTLM
hash to find the final correct password. For example, if the LM hash is the
password DOG, the user’s actual password could be dog, Dog, dOg, doG, DOg,
DoG, dOG, or DOG.

De f e nDe r’s T ip

To make your passwords harder to attack, ensure they have at least 15 charac-
ters so that Windows doesn’t store LM hashes. Additionally, be sure that your
passwords contain uppercase letters, lowercase letters, symbols, and numbers,
and that they are not based on dictionary words. Such passwords can be hard
to remember, so consider using a secure password manager with a very strong
master password!

Password Hash Attack Tools
You will probably use one of two tools to perform password hash attacks:
Cain & Abel or hashcat. Cain & Abel is a jack-of-all-trades security tool that
has been an industry standard for years. In addition to having numerous
features, it also has a GUI that makes it easy to learn. Hashcat is a newer
addition to the penetration tester’s toolkit. It lacks a GUI and has only

104 Chapter 5

one feature: cracking hashes. However, what hashcat lacks in ease of use it
makes up for in performance and support for a huge number of hash types.
As a penetration tester, it is useful to know how to use each tool.

Attacking Hashes with Cain & Abel
Cain & Abel offers hash cracking in the Cracker tab (the same tab
you used for decrypting a SAM file in “Analyzing Windows VHDs” on
page 98). Once you load the hashes in the Cracker tab, highlight the
hashes you want to crack and then right-click any of the selected hashes.
A context menu should appear with three cracking options at the top:
Dictionary Attack, Brute-Force Attack, and Cryptanalysis Attack, as
shown in Figure 5-6.

Figure 5-6: The Cain & Abel hash context menu

Selecting Dictionary Attack presents a screen where you can select dic-
tionary wordlists and perform some limited modifications on dictionary
terms, such as trying each word in all uppercase and all lowercase, as shown
in Figure 5-7.

The Brute-Force Attack option opens a different window where you can
enter the characters to include in the attack, as well as the length of pass-
words to attempt, as shown in Figure 5-8.

Targeting Virtual Machines 105

Figure 5-7: The Cain & Abel Dictionary Attack window

Figure 5-8: The Cain & Abel Brute-Force Attack window

Cain & Abel includes logic that automatically adjusts the brute-force
options, depending on the hash type. When you’re targeting LM hashes,
the default keyspace doesn’t include lowercase characters and is preset to
try passwords between one and seven characters in length, because these

106 Chapter 5

are known limitations of LM hashes. Once the attack is started, Cain &
Abel shows test progress, including the rate of passwords tried per second
and the total time remaining.

Finally, the Cryptanalysis Attack option will perform a rainbow table
attack against the hashes. The option screen for this attack is very simple,
providing only an option to specify paths to the rainbow tables. As with a
brute-force attack, it also displays the attack’s progress.

Testing Hashes with hashcat
Hashcat is a free, open source, cross-platform password hash cracking tool,
optimized to make full use of the processing power of the GPUs in modern
graphics cards as well as the CPU. You can download hashcat from https://
hashcat.net/hashcat/.

Much like Cain & Abel, hashcat offers both dictionary and brute-force
options, but it really shines in hybrid mode. By leveraging the power of
the GPU, hashcat can test a huge number of password permutations each
second—on the order of millions, billions, or even trillions, depending on
the graphics card and the hash type. Hashcat also supports the use of com-
plex rules to control its password generation, which can prove very useful
if you can determine a target company’s password policy. For example, if
you know that all passwords must be at least eight characters and contain
a number and a symbol, you can start your testing by eliminating all pass-
words that do not meet that criteria.

Hashcat offers extensive support for various hash formats. Whereas
Cain & Abel supports only about 30 hash formats, hashcat supports over
200. This extensive support will come in really handy should you encounter
a VM running some operating system or software that keeps its own pass-
word list (like PeopleSoft, Lotus Notes, or Joomla).

To learn how to use hashcat, I suggest reading the wiki at https://hashcat
.net/wiki/. Note that a misconfigured hashcat job could take orders of mag-
nitude longer than one that is properly configured with a good dictionary
and proper rules. Worse, a hastily created job might inadvertently exclude
legitimate passwords for a target system. Few things are more painful dur-
ing a penetration test than realizing that you need to restart a cracking job
that has been running for several days because of a command line error!

n o T e If the GPU in your computer isn’t very powerful, you might want to consider run-
ning hashcat on specialty Azure VMs that include NVIDIA-based GPUs, which are
designed for computationally intensive tasks. Unfortunately, the cost of running these
VMs for an extended period is usually costlier than building and operating your
own PC with a few high-end video cards. You might prefer using the Azure GPUs
under two circumstances, though. The first is if you need to crack a very important
password very quickly. Using Azure, you could create dozens of these special VMs
and assign each a different subset of the keyspace to test. The other is if you find pass-
word cracking to be a very rarely used technique in your engagements. In this case, it
may make more sense to use Azure rather than make the initial capital investment in
GPU hardware.

https://hashcat.net/wiki/
https://hashcat.net/wiki/

Targeting Virtual Machines 107

Using a VHD’s Secrets Against a VM
Once you’ve recovered a username and password from a VHD, you can
begin to assess the running VM in Azure—but first you’ll need to know
how to connect to the VM. To do this, you’ll need its hostname or IP
address and you’ll need to know which remote administration service is
running on the VM and its port. Azure VMs running Windows will usually
have Remote Desktop Protocol (RDP) available, whereas Linux VMs will
typically have Secure Shell (SSH) open. Less frequently, Virtual Network
Computing (VNC) protocol or telnet will be exposed, but these protocols
aren’t encrypted by default and shouldn’t be used, especially over the
internet.

Determining the Hostname
Given the choice of hostname or IP, I prefer to use the hostname because
IPs may be dynamically assigned. By default, Azure names its VHDs after
the hostname of their associated VM. For example, if a VHD filename is
myazurevm20151231220005.vhd, its hostname would usually be myazurevm
.cloudapp.net.

Of course, VHDs can be renamed, or their VM could be assigned a dif-
ferent hostname. If you find that to be the case, you can try to retrieve the
hostname information from Azure or from within the VHD. The easiest
way to do so is to use Azure PowerShell and the Get-AzureVM cmdlet to return
the hostnames of every VM in the subscription, but that assumes you have
an account with proper access.

Alternatively, you can turn to the VHD itself. Windows stores the host-
name in the SYSTEM registry hive, which we exported earlier in “Analyzing
Windows VHDs” on page 98. To see this value, you’ll need to load this file
into a registry viewer.

Recovering the Hostname from the VHD on Windows

Be very careful when using the Windows built-in regedit tool to recover the
hostname from the VHD; it’s just too easy to accidentally overwrite your
own PC’s registry with values from the VM. A better choice is to use MiTeC’s
Windows Registry Recovery (http://www.mitec.cz/wrr.html), as follows.

1. Install Windows Registry Recovery and then click FileOpen.

2. Select the SYSTEM file exported from the VHD and click OK.

3. Click the Raw Data option in the menu on the left (see Figure 5-9).

4. In the middle pane, navigate to ROOT\ControlSet001\Control\
ComputerName\ComputerName.

5. The hostname should be in the ComputerName string in the pane on
the right, as shown in Figure 5-9.

6. If you see directories named ControlSet002 or ControlSet003 under ROOT,
be sure to check those as well because the hostname may have changed.

108 Chapter 5

Figure 5-9: Viewing the hostname from the SYSTEM registry hive

There are other files in a Windows VM’s VHD that may contain the
hostname, but the SYSTEM hive is the most reliable way to obtain it.

Recovering the Hostname from the VHD on Linux

It’s quite simple to recover the hostname from the VHD on Linux. To do so,
simply locate the /etc/hostname file and display it. It should contain the VM’s
hostname.

Finding a Remote Administration Service
Once you know the hostname, you should determine if the VM has an
accessible remote administration tool. Although the RDP, SSH, VNC, and
telnet services have default ports, the target VM may not use those ports, so
you’ll need to determine which one the remote service is using. This can be
done by using information from the subscription, checking known ports, or
performing a full port scan.

Targeting Virtual Machines 109

Using PowerShell

The best way to find any accessible remote ports in a VM, provided you have
proper credentials, is to use the PowerShell reconnaissance you learned
in “Gathering Information on Networking” on page 56. This data will
contain the open ports allowed through the firewall for each VM from the
output of the Get-AzureEndpoint and Get-AzureRmNetworkSecurityGroup cmdlets.
Review this output and compare any listed open ports with well-known
administration ports, as listed in Table 5-1.

Table 5-1: Common Administration Ports

Service TCP port(s)

RDP 3389

SSH 22

VNC 5900

telnet 21

Windows Remote Management
(PowerShell remoting)

5985, 5986

If you find any matches, try to connect to the VM using a client for
that protocol. For example, in Windows, you could use the built-in mstsc.exe
application to connect to RDP endpoints, PuTTY (https://www.chiark.greenend
.org.uk/~sgtatham/putty/latest.html) for SSH and telnet, or TightVNC (http://
tightvnc.net/) for VNC servers. If you are running Linux, clients for SSH,
VNC, and telnet are usually built in. For RDP, freeRDP (http://www.freerdp
.com/) is a popular choice.

If Windows Remote Management is available, you can connect using
PowerShell. To do so, run the following:

 PS C:\> $s = New-PSSessionOption –SkipCACheck –SkipCNCheck –SkipRevocationCheck
 PS C:\> $c = Get-Credential
 PS C:\> Enter-PSSession -Credential $c -ComputerName TARGET_IP -UseSSL -SessionOption $s
 [TARGET_IP]: PS C:\Users\Administrator\Documents> hostname

WebhostSrv2012
[TARGET_IP]: PS C:\Users\Administrator\Documents> exit
PS C:\>

This will instruct PowerShell to bypass SSL certificate validation
(since your client doesn’t trust this host), prompt you for credentials for
the target machine , and then connect . If the connection succeeds, the
command prompt will change to show that you are connected to the remote
host and can now run commands on that machine .

Testing Default Ports

If PowerShell access to the subscription isn’t an option, try testing the com-
mon default ports for each service in Table 5-1. This can be performed

110 Chapter 5

quickly on Windows using the built-in Test-NetConnection PowerShell cmdlet,
with no subscription access needed. Simply run the command for each port
you need to test:

 PS C:\> Test-NetConnection -ComputerName TARGET_IP -Port 3389
ComputerName : TARGET_IP
RemoteAddress : TARGET_IP
RemotePort : 3389
InterfaceAlias : Ethernet
SourceAddress : 192.168.0.114

 TcpTestSucceeded : True

 PS C:\> Test-NetConnection -ComputerName TARGET_IP -Port 21
WARNING: TCP connect to (TARGET_IP : 21) failed
WARNING: Ping to TARGET_IP failed with status: TimedOut

ComputerName : TARGET_IP
RemoteAddress : TARGET_IP
RemotePort : 21
InterfaceAlias : Ethernet
SourceAddress : 192.168.0.114
PingSucceeded : False
PingReplyDetails (RTT) : 0 ms

 TcpTestSucceeded : False

In this example, a test connection to port 3389 was attempted and
succeeded , whereas the connection to port 21 failed . Because 3389
is the port for RDP, I would then attempt to connect to this VM using
mstsc.exe.

Port Scanning

If your test of default ports fails and you don’t have proper PowerShell
access, move on to a full TCP port scan of the VM. This will take several
minutes, depending on the speed of your internet connection and the VM’s
current load, but it will reliably determine every available port that is both
open on the VM and accessible from your PC.

The best port-scanning tool for this task is Nmap (https://nmap.org/).
It can be installed on Windows or Linux, though I recommend using it on
Linux, if possible, because it runs faster there. After installing Nmap, open
a command prompt and run the following:

nmap -Pn -p 0-65535 -sV hostname

Starting Nmap 7.01 (https://nmap.org)
Nmap scan report for hostname (IP)
Host is up (0.041s latency).
Not shown: 65534 filtered ports
PORT STATE SERVICE VERSION
3389/tcp open ssl/ms-wbt-server?
5986/tcp open ssl/http Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)

Targeting Virtual Machines 111

Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

Service detection performed. Please report any incorrect results at https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 10081.46 seconds

The -Pn switch tells Nmap to continue even if the host doesn’t respond
to a ping request. The -p switch tells Nmap which ports to scan (in this case,
all possible TCP ports). Finally, -sV instructs Nmap to try to determine which
service is running on any open ports it finds. Based on these results, you
should learn which remote administration services are available in your
target VM and on which ports they run.

These techniques can fail for three possible reasons: either the VM
is currently shut down, all administration services have been disabled
(or their ports have been restricted by a firewall), or the hostname or IP
address isn’t correct. The only options in this case are to try again later or
to give up and move on to other parts of the penetration test.

Resetting a Virtual Machine’s Credentials
Combining VHD forensics with password cracking, as discussed previously,
is a powerful way to obtain credentials from a VM, but it’s limited to cases
where Azure Disk Encryption isn’t enabled and when the attacker has time
to crack the administrator password. If you manage to gain administra-
tive rights to a subscription, you can use another, much faster method that
doesn’t rely on obtaining information from disks: you can reset a VM’s
administrator password. Although this method is fast and reliable, it also
has a high likelihood of being detected, so I save it as a last resort.

How to Reset a VM’s Credentials
To avoid permanently locking users out of VMs when they’ve forgotten their
password, the Azure portal offers a reset option for VM passwords, as shown
in Figure 5-10. To access it for your target VM, sign in to the portal, click
the Virtual Machines section, click your target VM, and then select Reset
password.

This form has a few nice features. For one, it shows the VM’s built-in
administrator or root account name (azureadmin in this case), even if it has
been changed. This can be very helpful even if you aren’t planning to per-
form a password reset, because it allows you to determine a valid account
name that can be used for things like dictionary attacks. Second, when a
password is too weak, a red exclamation point appears at the right end of
the password box. If you hover over the exclamation point, you’ll be able to
read a tool tip about password complexity requirements. This would be per-
fect information to use to configure hashcat’s rules.

112 Chapter 5

Figure 5-10: Reset password screen for an Azure VM

To actually complete the password reset and change the administra-
tor password, simply enter your desired password in the Password field and
click Update. If you modify the User Name field, the administrator account
should also be renamed. Additionally, if the built-in administrator account
is disabled, the password reset option should re-enable it.

This form also contains an option in the Mode drop-down menu to
reset the remote access configuration. This option will leave the original
password intact but will enable RDP (Windows) or SSH (Linux) on the VM
to restore the ability to connect remotely. This feature is intended to restore
an administrator’s ability to connect to a VM after a misconfiguration, but
for a penetration tester, it can re-open a remote access service on a VM that
has been hardened.

Downsides to Password Resets
Even though a password reset is a fairly reliable way to gain access to a VM,
it has some downsides. Most importantly, when the password is successfully
changed via the portal, you’ll have no way to determine what the previous
password was. That means that the password can’t be set back to its origi-
nal value, and you are now the only one with the credentials. Of course,
this also means that as soon as a legitimate user of the VM’s administrator
account tries to connect to the VM, they will realize something is wrong.
They won’t necessarily be blocked from accessing the VM because they can
just perform a password reset themselves (assuming they have Azure por-
tal access), but even inexperienced users will likely realize that a security
incident may have occurred and will begin investigating or report it to
their security monitoring team.

Targeting Virtual Machines 113

Second, even though you will have the credentials, you will likely have
little to no idea how the target VM is configured. If the software running
in the VM is actively using the account you reset, resetting the password
may cause unforeseen outages in other services, which expect a different
password.

Finally, this method has some technical limitations. The VM must be in
a running state for the password reset option to be available. Additionally,
the Azure VM agent software must be installed on the VM. The default OS
images in Azure typically have this agent already installed, but some VMs
may have had the agent removed by an administrator, may be running a
less popular or older operating system with no agent available, or may have
been built from nonstandard images.

Summary
In this chapter, we discussed how an attacker can create and download a
snapshot for a virtual machine’s disk image from Azure Storage and then
recover password hashes and other sensitive data from it with forensic
recovery tools like Autopsy. We then examined how to crack these hashes
in either Cain & Abel or hashcat to determine the original plaintext pass-
words. From there, we determined what management services were acces-
sible on the VM using PowerShell or port scanning. Then, we used the
cracked passwords to connect back to the VMs.

After that, we looked at Azure’s VM password reset option. You can use
this option to gain administrator level access to any VM that you can access
in the portal, with no additional knowledge about the VM’s configuration.
Finally, we considered some possible limitations to this attack.

In the next chapter, we’ll look at Azure networking to examine how to
target internet-facing VMs, as well as how systems within a corporate net-
work can interact with Azure services.

6
I n v e s t I g a t I n g n e t w o r k s

Fundamentally, a cloud is a large collection
of computing and digital storage resources

made available for rent. This business model
relies on the internet, which allows the cloud’s

users to transfer data into and out of the provider’s
systems, manage remote systems, and make services
like websites and email servers available to end users.

Because connectivity is so crucial to the overall success of a cloud,
Azure offers users a variety of network settings. By default, Azure makes
services internet-facing so that they are accessible to anyone. However,
Azure also provides other networking options, used for creating links
between an internal corporate network and Azure services. Both kinds of
connections are important for Azure to be able to accommodate its cus-
tomers’ workloads and requirements, but it means that a misconfiguration
could lead to a security disaster.

116 Chapter 6

In this chapter, we examine how common configuration shortcuts in
firewalls can leave services vulnerable to attack. We also look at how an
attacker can leverage Azure’s tunnels to compromise a corporate network.

Best Practices: Network Security
One of the first lines of defense when securing resources in the cloud is
proper network configuration. After all, if malicious traffic never reaches
a service, the threat of an exploit occurring is minimized. Some of my
 common recommendations to customers include creating small, dedi-
cated virtual networks, using Network Security Groups, and avoiding
 accidentally bridging your corporate network to the internet.

Begin by defining separate Azure virtual networks for each of the
services you run in the cloud. By creating a network dedicated to just the
resources needed to provide one service, you can configure the network
to allow only the minimum amount of access required to make the service
work. It becomes much harder to manage a network if it contains dozens of
resources that are used for many different projects.

Next, make use of Azure Network Security Groups (NSGs), as first dis-
cussed in “Gathering Information on Networking” on page 56. Restrict
traffic to virtual machines to only what is needed and disallow access to
remote management services if you aren’t currently performing admin-
istrative tasks on the VM—you can always temporarily add a rule later
to allow access to those ports from your IP address if you need to make
changes. Also, consider modifying default rules. For example, if a service
doesn’t need to make outbound connections to the internet, block them.
This makes it much harder for an attacker to have malware call back to the
attacker’s system if they manage to gain an initial foothold into a VM.

Finally, Azure offers several services that provide the ability to create a
link between Azure and your company’s network, which I discuss in “Cloud-
to-Corporate Network Bridging” on page 123. While these features are
great for enabling Hybrid IT—where services running on-premises operate
seamlessly with those in the cloud—they can also lead to an undesirable
condition: if an Azure virtual network with this connectivity also hosts ser-
vices that are exposed to the public internet, any breach of one of those
services potentially gives an attacker a direct path back to the corporate
network. For this reason, it is very important to separate those services that
need corporate network access from those that need to be exposed pub-
licly. I suggest keeping them in entirely different subscriptions, to avoid any
accidental bridging. If some service needs both types of access, design it
extremely carefully and spend a good deal of time threat modeling to try to
determine and address all possible hazards. And of course, be sure to pen-
test it to validate its security!

Networking in Azure is a broad topic, so there are many features that
might benefit your usage scenario that I can’t cover here. Fortunately, Azure
network security has some of the most comprehensive documentation avail-
able. See https://docs.microsoft.com/en-us/azure/best-practices-network-security/ for

https://docs.microsoft.com/en-us/azure/best-practices-network-security/

Investigating Networks 117

a thorough threat model and https://docs.microsoft.com/en-us/azure/ security/
azure-security-network-security-best-practices/ for a discussion of features that
can make your links more secure.

Avoiding Firewalls
Azure offers firewalls for several of its services. They are most commonly
used to protect virtual machines, SQL servers, and application services. In
the case of VMs and SQL, the firewalls are enabled by default and are free
to use with their respective services. For applications, Azure has a paid Web
Application Firewall option. Understanding the features and defaults of
each firewall gives a pentester a better idea of what methods are likely to
work and which time-consuming scans they should avoid.

Virtual Machine Firewalls
Firewalls are VMs’ first—and often only—line of defense against network-
based attacks. As of this writing, administrators have few options for intru-
sion prevention virtual appliances to protect their VMs. They also can’t
create advanced routing rules to deflect certain traffic before it gets to the
VM. For these reasons, administrators must take extra care when setting up
the firewall.

Just about every operating system contains a host-based firewall, which
allows the administrator of the system to configure what ports and services
should be accessible from the network. However, these native firewalls have
a few problems:

Complexity and inconsistency Every operating system has a differ-
ent method for configuring its firewall, uses different commands, and
sometimes even uses different terminology. An administrator may have
experience with one type of firewall but inadvertently make a crucial
mistake when setting one up in a less familiar OS.

Unplanned changes over time A host firewall configuration may
start out secure, but may weaken over time without anyone realizing a
change has happened. For instance, installing a new software package
or update may add new exceptions to the firewall with no warning, such
as a program that includes a web interface opening TCP ports 80 and
443 to inbound traffic.

Bugs Firewall software is generally very well tested, but there’s always
a chance of a bug that could let a packet through unintentionally or
crash the entire VM. Indeed, bugs in security software such as firewalls
and antivirus are often among the most severe. This isn’t just because
exploiting them could bypass the security control that the software is
supposed to provide; it’s also because this software is always running,
is present on just about every system, has system-level privileges, and is
exposed to potentially malicious input. For example, in 2017, Google
security engineers discovered a flaw in Microsoft’s antivirus scanning
engine that allowed them to take control of a machine by sending a

https://docs.microsoft.com/en-us/azure/security/azure-security-network-security-best-practices/
https://docs.microsoft.com/en-us/azure/security/azure-security-network-security-best-practices/

118 Chapter 6

malicious email that the antivirus scanned upon arrival—the user
didn’t even have to open the email. This flaw was quickly patched, but
in the same year, similar issues were also found in other vendors’ secu-
rity products, and it’s likely that more are yet to be discovered.

Load Host-based firewalls analyze packets within the operating
system, which means that each examined packet consumes proces-
sor cycles and memory momentarily. In the event of heavy load—and
especially during a denial-of-service (DoS) attack—this additional
stress can prevent the server from performing its normal work. This
can even have a financial impact in the cloud, because Azure’s auto-
scaling feature can be configured to automatically bring additional
resources online or upgrade VMs to higher pricing tiers to deal with a
temporarily increased load, and these upgrades are billed to the VM’s
subscription.

Subscription vs. VM administration The administrators of the VM,
which may be different from the subscription administrators, control
host-based firewalls. This means an administrator could open their sys-
tem up to attack, and if that VM is compromised, the attacker may then
be able to use that system to attack other VMs or services in Azure that
are more restricted. Consider that many corporations allow users to be
local administrators of their own workstations, but few permit these
same users to expose their workstations directly to the internet. Azure
should be treated the same way.

To address all these issues, Azure offers firewalls for VMs outside of the
host-based options, in the form of endpoint rules in classic Azure Service
Management (ASM) VMs and Network Security Groups (NSGs) in Azure
Resource Manager (ARM) VMs. These rules are easy to configure and work
regardless of the VM’s operating system—and only someone with the right
level of subscription access can disable or reconfigure these firewalls.

n o t e Microsoft allows other security companies to offer Next-Generation Firewalls to
customers in the Azure marketplace. These “firewalls as a service” address the issues
discussed in this section, and may also provide additional unique protections, such
as deep packet inspection or content filtering. Because these firewalls vary signifi-
cantly by vendor, we can’t cover them here. If you encounter one during an assess-
ment, review its features and ensure it has been configured properly to secure the
customer’s services.

There are a few gaps in this otherwise solid armor, though. For admin-
istrative convenience, several default rules are applied to each new VM.
These rules open different ports, depending on which operating system is
used in the VM. As a penetration tester, it is important to know what ports
Azure opens by default. Users generally don’t change these rules, which
means the ports are open to anyone on the internet.

For Windows servers, Azure opens port 3389, for both TCP and UDP
inbound traffic, to be used for the Remote Desktop Protocol (RDP).
Additionally, inbound TCP port 5986 is open by default for Windows

Investigating Networks 119

Remote Management (WinRM), which, among other things, is used by
PowerShell to remotely connect to the VM. On older VMs, Azure moved
RDP to a random port between 49152 and 65535. Although this is no longer
done for newly built classic VMs, you may still find some older VMs using
this security-through-obscurity method.

For Linux, the port list is much smaller; only TCP port 22 inbound is
open by default. This is the port used for Secure Shell (SSH), the encrypted,
console-based remote management service. Depending on the chosen Linux
image and user preferences, SSH may be configured to use certificate-based
authentication or traditional usernames and passwords.

Of course, all these protocols are authenticated, so you can’t just con-
nect to the port and have control of the VM. However, if an attacker finds a
valid credential, succeeds with a dictionary or brute-force attack, or discov-
ers an authentication bypass exploit for any of these services, then they will
be able to access the system.

De f e nDe r’s t Ip

To help protect against attackers that attempt to access administrative inter-
faces through allowed inbound connections in the firewall, you can change
the firewall rules to allow connections only from specific IP addresses, such as
those of your company’s network egress points. Alternatively, you could block
access to those ports from the internet, and set up a hardened virtual machine
with inbound RDP allowed from a limited set of IP addresses that serves as a
jump server. From this jump server, you can access the administrative interfaces
of all other services through a virtual network that is accessible only from within
the subscription.

By default, all outbound traffic is allowed from Azure VMs. A sub-
scription administrator could change this, but that’s rarely done. A pen-
etration tester can benefit from this allow-all rule in several ways. First,
if an attacker gets access to a system, there is no rule to limit the exfiltra-
tion of data. Second, tools such as Metasploit can use reverse TCP shells
to connect back to an attacker’s command-and-control server to receive
instructions. Finally, an attacker on the system can download tools from
anywhere they desire.

Azure SQL Firewalls
Azure SQL servers also have their own firewalls, but unlike VM firewalls,
they aren’t optional; they are on by default and no one can disable them.
However, an attacker can still use a number of tricks to circumvent the fire-
wall and directly target the SQL server.

First, you may recall from Chapter 3 that developers sometimes add
rules to SQL firewalls that allow connections from anywhere. An attacker
can easily spot these rules in a database’s firewall page on the Azure portal,

120 Chapter 6

because these rules allow connections from a large IP address range, such
as 0.0.0.0 to 255.255.255.255. While the firewall is technically still running
with such a rule in place, it’s no longer filtering any connections, so an
attacker can connect to the SQL server from anywhere on the internet
and try attacks like password brute-forcing attempts.

Second, even if an allow-all rule isn’t in place, an attacker might still be
able to establish a connection. Some database servers have many authorized
users who frequently connect from a variety of network locations, such
as a central office, a field office, a corporate VPN, their homes, and even
mobile networks at coffeehouses and airport terminals. When users can
access a server from a variety of locations, the firewall rules likely contain at
least a few allowed ranges; for example, a firewall might allow any connec-
tion originating from the corporate network. This means an attacker who
gains access to any corporate system could then use that machine as a pivot
point for attacking the SQL server. If an attacker has access to the Azure
portal but doesn’t have access to a machine with a previously granted IP
rule, the attacker might succeed in adding a new rule for their IP address.
And because users frequently add new rules to SQL firewalls—sometimes
a database has a dozen or more entries—it’s unlikely anyone would notice
the addition of one more. If you add a new rule, make sure your rule name
mimics other legitimate rules in order to better blend in. Also make sure
that you record and account for any such modifications so that you can
share a list with your client to verify that these modifications are removed
at the end of your engagement. Be aware that a real attacker might take
advantage of any new openings you create—a very undesirable situation.

De f e nDe r’s t Ip

You should periodically review firewall rules for changes. It is a good idea
to maintain a list of rules required for all services that rely on the SQL server;
this way, you can delete any extra rules that creep in over time. For example,
if a deleted rule was being used for developer workstations, when a devel-
oper reconnects they can easily add it again from either the Azure portal or
SQL Server Management Studio. Without occasional cleanup, old rules tend
to build up, thus increasing server exposure and making it hard to detect
rogue rule additions. You can automate illegitimate-rule detection with Azure
PowerShell’s Get-AzureSqlDatabaseServerFirewallRule cmdlet.

One final possible weakness is that SQL firewall rules are configured
at the server level, not per database. So, if a server has 20 databases, each
used by different teams, one rule set is applied to all of them. Therefore, an
attacker might be able to compromise a workstation that a team with poor
security hygiene uses to access an unimportant Azure SQL database; then,
the attacker can use that same system to target a more interesting database
that a more secure team uses.

Investigating Networks 121

Azure Web Application Firewalls
A Web Application Firewall (WAF) isn’t like a traditional firewall that uses
rules based on ports and IP addresses to determine if traffic should pass.
Instead, a WAF sits in front of a web application and looks for malicious-
looking requests. When the WAF identifies a suspicious pattern, it can
either report the incident or block the traffic outright. In this way, a WAF
is more like an intrusion detection system (IDS) or intrusion prevention
system (IPS) than an IP firewall. WAFs have become standard enough that
beginning in 2017, the popular Open Web Application Security Project
(OWASP) Top 10 list of web vulnerabilities considers the absence of a WAF
itself to be a security finding.

Keeping up with industry trends, Azure now offers a WAF that users can
deploy in front of Azure websites and applications. Microsoft also allows other
vendors to provide WAFs to Azure customers. The functionality of most WAFs
is similar, so we’ll focus on Microsoft’s WAF, which is the most commonly
used in Azure.

To enable Microsoft’s WAF, a customer must create an Azure Application
Gateway, which is a load-balancing service that distributes HTTP and HTTPS
requests among a pool of Azure servers. During the configuration phase of
the Azure Application Gateway, the user has the option to also enable a WAF
on the gateway. When configuring the WAF, the user can choose whether
the firewall will just detect and log threats or if it will block them. The latter
option increases the security of the site the WAF protects, but risks blocking
valid traffic if a rule is overly broad.

Azure’s WAF uses rules that OWASP defines in its ModSecure Core
Rule project. Site administrators can select from either OWASP 2.29
or OWASP 3.0 rule sets. Aside from removing some frequent false posi-
tives and shifting some of the rule severity scores, the biggest change in
OWASP 3.0 is the addition of IP repudiation rules. These have the ability
to block requests from known-malicious senders and from IP addresses
associated with certain countries. A penetration tester should be aware of
OWASP’s repudiation rules because a WAF might block the tester’s host
under these rules, leading them to believe a server isn’t vulnerable to a
given attack, when in reality, that attack would work from a different IP
address, resulting in a dreaded false negative in their report.

The one major weakness of Azure’s WAF is its limited configurability.
An administrator can manually enable or disable individual WAF rules
or a class of rules, but they can’t tweak a rule to have it fit their particular
scenario. So, if a rule is likely to generate a significant number of false posi-
tives, the administrator will probably disable it. Additionally, many of the
rules have only vague descriptions, so the user configuring the WAF might
turn off more rules than needed to get their site working. To give you a
sense of the rules list, the WAF configuration page is shown in Figure 6-1.

Penetration testers looking to bypass a WAF don’t have a definitive solu-
tion. Instead, if you suspect a customer is using a WAF that’s blocking a given
attack, your best bet is to research the exploit online and see if others have

122 Chapter 6

found a way to sneak past WAFs. Otherwise, try modifying the code used in
the attack—maybe some minor changes will bypass the WAF rule’s pattern.

Figure 6-1: Azure WAF configuration with OWASP 3.0 rules selected

De f e nDe r’s t Ip

WAFs are not foolproof. Like any pattern-based security product, they are
likely to miss novel attacks, and an attacker can bypass your WAF with a
clever rewrite of a known exploit. Despite their vulnerabilities, WAFs do offer
an additional layer of protection, which is a key part of building a more
secure system.

Additionally, WAFs tend to introduce human risk. Developers are often
tempted to believe that a WAF will prevent any malicious behavior, so they
think they can deploy code that contains security bugs with impunity. This is
the equivalent of an IT professional thinking that they can skip installing secu-
rity updates as long as antivirus software is installed. Clearly neither of these
is true! Be sure that you stay vigilant, even when using a WAF; otherwise, the
WAF may result in a decrease of your overall security.

Investigating Networks 123

Cloud-to-Corporate Network Bridging
When a company begins cloud adoption as part of its IT strategy, it can
either migrate existing workloads or build new services that are designed
specifically for the cloud. Transferring data between corporate systems and
the cloud provider poses a challenge regardless of the choice. To address
this dilemma, Microsoft offers two different types of connections between
customer environments and Azure.

For systems being migrated from a corporate environment, Azure
allows users to create a direct connection between their subscription and
company network, where the Azure resources share the same IP address
space as their original corporate network; this direct connection is called
Azure Virtual Network. A company can achieve Azure Virtual Network
connectivity with one of two different Azure services: virtual private net-
work or ExpressRoute. We’ll discuss both of these in the next section.

Azure Virtual Network is very convenient for cloud migrations, but it’s
overkill for some workloads. For many use cases—like for services designed
to run in the cloud—a simple message delivery system may be sufficient.
For example, an Azure website may be able to run entirely in the cloud but
need the ability to insert a record in an on-premises database when a new
order is placed. For these kinds of scenarios, Azure offers Service Bus and
Logic Apps.

Virtual Private Networks
Virtual private network (VPN) connections are a well-established technol-
ogy in the corporate IT world. Many companies use them so employees
can work from home or while traveling. VPNs create an encrypted tunnel,
over the internet, between the client and the VPN gateway running at the
company. The VPN can tunnel either all network traffic or just the traffic
destined for the office. VPNs are most commonly used between a client
machine and a corporate network, and occasionally to connect two dif-
ferent corporate locations to each other or even to connect a tech-savvy
consumer’s smartphone to their home network.

Azure offers several different forms of VPN connectivity:

Point-to-site A tunnel connecting individual client systems to an
Azure virtual network

Site-to-site A connection between a corporate network and an Azure
virtual network

Multisite Multiple corporate networks all connecting in to the same
Azure virtual network

VNet-to-VNet A tunnel between two Azure virtual networks

Azure provides these options so that Azure services in a subscription
can communicate with other systems, networks, or subscriptions without
having one or both sides of the connection exposed to the internet. This
means two things for a penetration tester: First, there may be services that

124 Chapter 6

are in scope for an assessment that can only be reached from a system con-
nected to one of these VPN tunnels. Second, compromising an Azure ser-
vice or subscription could provide access to a direct link back to a corporate
network or service that isn’t otherwise exposed.

w a r n I n g VPN connections could connect the target’s resources to a partner company’s network,
which may not be in the agreed-upon scope for your assessment. Always verify that
any new systems you discover are part of your assessment before proceeding.

To exploit these connections, an attacker needs to know how to identify
each form of VPN connectivity and how each connection performs authen-
tication. Determining these properties differs depending on the type of
connection. Let’s examine each.

Connecting to Point-to-Site VPNs

Point-to-site connectivity requires that clients use certificate-based authen-
tication. To set up the VPN, an administrator creates a virtual network
in Azure and defines a private IP address space for that network, such as
10.0.0.0/16. They then create an instance of the VPN gateway service and
assign it a subnet range within the virtual network. Finally, the adminis-
trator creates a self-signed certificate that will be used as the trusted root
certificate to validate client requests, and they save the public key portion
of the certificate in the VPN gateway configuration.

To allow a client to connect, the administrator downloads the VPN
client software from the Azure portal and installs it on the client machine.
The administrator must also generate a new certificate using the previously
generated certificate as its root authority and install the private key for this
certificate into the client’s certificate store.

To determine if a point-to-site VPN is in use, you can either check in
the subscription using the Azure portal or check on a client machine you
suspect uses the VPN. Within the Azure portal, open the virtual network
gateway blade—Azure’s terminology for a service’s configuration page—and
see if any gateways are listed that have the Gateway Type listed as VPN. If
so, click each of those gateways, then click the Point-to-site configuration
option for each one, which should open a screen similar to Figure 6-2.

This window shows an administrator all the information about point-
to-site connections for the selected gateway: the number of active connec-
tions and total bandwidth used, the address space assigned to the VPN,
the base64-encoded public key portion of the root certificate used to
validate client certificates, the thumbprints of any client certificates that
have been revoked, and the IP addresses of any currently connected VPN
clients. As you can see, the only information about connected clients is
the IP address in use. This means that if you can create an illicit connec-
tion to the VPN, an administrator wouldn’t obtain detailed information
about your system.

Investigating Networks 125

Figure 6-2: Azure VPN point-to-site configuration

On a Windows 10 client machine, you can check for the VPN by pressing
windows-R and entering ms-settings:network-vpn, which should open the VPN
settings screen. On earlier versions of Windows, enter control netconnections
instead. Check if any VPN connections are listed; if there are, select a connec-
tion and click Advanced Options. An Azure VPN connection’s server address
will begin with azuregateway and end in cloudapp.net, as shown in Figure 6-3.

Figure 6-3: Windows 10 VPN details for
an Azure VPN connection

If you find a client with such a VPN connection, you can leverage that
machine to launch network scans against other addresses in the virtual
network range—but that may alert the system’s owner. Instead, as long as
you have administrative rights to the system, I suggest taking the connec-
tion details and certificates from the client and then connecting to the VPN
from any other Windows host.

On the client system, open the %appdata%\Microsoft\Network\Connections\
Cm directory. This directory should contain a .cmp file and a subdirectory,
both named with the same GUID. Copy the .cmp file and all the files within
the GUID subdirectory to one folder on your own computer, such as C:\vpn.

126 Chapter 6

Next, export the public key for the VPN root certificate. To do this,
open a PowerShell window and run the script in Listing 6-1.

$path = "$env:appdata\Microsoft\Network\Connections\Cm"
 $cmsFiles = Get-ChildItem -Path $path -Filter *.cms -Recurse

foreach ($file in $cmsFiles)
{

 $match = Select-String -pattern "CustomAuthData1=" $file
 $thumbprint = $match.Line.Split('=')[1].Substring(0,40)
 $cert = (Get-ChildItem -Path "cert:\CurrentUser\Root\$thumbprint")

 Export-Certificate -Cert $cert -FilePath "$thumbprint.cer"
}

Listing 6-1: PowerShell script to export the root certificate(s) used by VPN connections

This script recursively checks for the .cms configuration files within
the Network\Connections directory , extracts a connection’s root certificate
thumbprint , and then exports that certificate to the current directory .
Copy any exported certificates to your computer and import them into the
Current User\Trusted Root Certification Authorities store.

The last thing you need from the target system is the private key
for the certificate used to authenticate the VPN connection. It resides
in the Current User\Personal certificate store, but it’s likely marked as non-
exportable. Fortunately, Mimikatz can export these protected certificates.
To extract the certificates, run Mimikatz from an administrative command
prompt and then issue these commands:

mimikatz # crypto::capi
mimikatz # privilege::debug
mimikatz # crypto::cng
mimikatz # crypto::certificates /store:my /export

This will export all of the user’s personal certificates to the current
directory. The root certificate you exported previously will be the root of
the path to the certificate used for Azure VPN authentication. Copy the
exported PFX file to your system and then import it into your Current User\
Personal certificate store.

n o t e The default password for PFX files exported through Mimikatz is mimikatz.

Last, you’ll need to run a command to create the VPN connection
on your own computer. Open a command prompt, navigate to the direc-
tory containing the files you copied (such as C:\vpn), and then run the
command

C:\vpn> cmstp.exe /s /su /ns GUID.inf

where GUID is the name of the .inf file copied from the target system. This
should add the VPN connection to your system; you should now be able to

Investigating Networks 127

connect to the Azure virtual network by clicking the Network icon in the
notification area and then clicking the Connect button on the VPN in the
fly-out menu shown in Figure 6-4.

Figure 6-4: Network fly-out with an
Azure VPN connection

Connecting to Site-to-Site VPNs

Whereas point-to-site VPNs connect a single client to a remote network,
site-to-site VPNs bridge an entire network segment to a different remote
network. In Azure, these connections are used to connect a portion of a
corporate network to an Azure Virtual Network. Using a site-to-site VPN
allows a group of servers in an on-premises datacenter to directly connect
with Azure resources such as VMs without having to install VPN clients on
each server. It’s a common configuration in companies that are migrating
servers gradually to the cloud but that still need to reach their corporate-
network counterparts.

To create such a connection, the corporate network must have a local
network device, such as a router or VPN gateway appliance, that supports
site-to-site VPNs. The administrator then configures the VPN in both the
Azure portal and their local network device. They then configure each side
of the connection with the public IP address of the other side, as well as
the private network IP range represented behind each VPN gateway, which
allows the gateway to determine if it should route traffic over the connec-
tion. To authenticate the connection, both sides are also given the same
shared key.

Because administrators can set up the corporate network side of the
VPN on a wide variety of devices, determining which device is responsible
for a given connection is difficult, so it’s impractical to describe potential
attacks against them. Instead, for site-to-site VPNs, focus on the Azure side
of the connection.

If you can get administrative access to the Azure subscription, you
can use PowerShell to display the details of VPN connections. The script
in Listing 6-2 will enumerate each connection and display its important
details.

128 Chapter 6

 $connections = Get-AzureRmResourceGroup | `
 Get-AzureRmVirtualNetworkGatewayConnection

foreach ($connection in $connections)
{

 Get-AzureRmVirtualNetworkGatewayConnection -ResourceGroupName `
 $connection.ResourceGroupName -Name $connection.Name

 Get-AzureRmLocalNetworkGateway -ResourceGroupName `
 $connection.ResourceGroupName | `
 Where {$_.Id -eq ($connection.LocalNetworkGateway2.Id)}

 Write-Output "==="
}

Listing 6-2: PowerShell script to export the details of site-to-site VPN connections

This script will get a list of every Virtual Network gateway in every
resource group in the subscription , and then it will display details about
the connection and information about the remote site linked to the
VPN . For each VPN connection in the subscription, here’s what the out-
put from this script should look like:

 Name : VPN_Name
ResourceGroupName : Resource_Group
Location : centralus
Id : /. . ./Microsoft.Network/connections/VPN_Name
Etag : W/"GUID"
ResourceGuid : GUID
ProvisioningState : Succeeded
Tags :
AuthorizationKey :

 VirtualNetworkGateway1 : "/. . ./virtualNetworkGateways/Gateway_Name"
VirtualNetworkGateway2 :

 LocalNetworkGateway2 : "/. . ./localNetworkGateways/Remote_Network"
Peer :
RoutingWeight : 0

 SharedKey : MySuperSecretVPNPassword!
 ConnectionStatus : Connected

EgressBytesTransferred : 0
IngressBytesTransferred : 0
TunnelConnectionStatus : []

 GatewayIpAddress : 203.0.113.17
LocalNetworkAddressSpace : Microsoft.Azure.Commands.Network.Models.
PSAddressSpace
ProvisioningState : Succeeded
BgpSettings :

 AddressSpaceText : {
 "AddressPrefixes": [
 "192.168.200.0/24"
]
 }
--snip--

Investigating Networks 129

The output begins with the name given to the site-to-site connec-
tion , which may tell you something about the connection’s purpose,
and so might the name of the Azure VPN gateway device and the on-
premises network —all of which are chosen by the user. The SharedKey
value is the secret used to authenticate one site to the other ; by obtain-
ing the SharedKey, you may be able to establish your own connection to
the corporate VPN gateway, depending on the configured IP ranges.
ConnectionStatus shows whether the VPN link is currently established .
Finally, GatewayIpAddress is the public IP endpoint for the corporate VPN
gateway , and AddressSpaceText is the private network IP range on the
client network for the VPN .

De f e nDe r’s t Ip

You need to take two important steps to avoid rogue connections to your
site-to-site VPN. First, be sure to choose a complex shared key that an attacker
can’t guess; this way, your adversary is forced to compromise either your VPN
gateway device or the Azure subscription to obtain it. Second, configure your
VPN settings and firewalls to only allow site-to-site connections (and the net-
work traffic routed through them) between the IPs you expect.

Connecting to Multisite VPNs

Multisite VPNs allow numerous sites to interconnect with each other, either
in a mesh topology, where every branch in the VPN links to every other
branch, or a hub-and-spoke design, where branches talk back to central
offices. Multisite VPNs are useful for companies with many small field
offices, such as banks, insurance agencies, and political campaigns.

Azure handles multisite VPNs by allowing each Azure VPN gateway to
have multiple site-to-site connections concurrently. Therefore, all the infor-
mation from the previous section also applies to multisite configurations.
The script in Listing 6-2 is designed to handle all types of VPN deploy-
ments, so you can use it for multisite VPNs too.

Connecting to VNet-to-VNet VPNs

For resources running in two different Azure virtual networks that need
to communicate, Microsoft offers VNet-to-VNet VPN connections. Admin-
istrators can use these VPNs to connect other virtual networks in different
regions or even different subscriptions. They share almost all of the same
attributes as site-to-site VPNs, except instead of a customer network device
on one end of the connection, VNet-to-VNet VPNs use another Azure VPN
gateway instance.

One option for you as a pentester is to add a VPN gateway to your
own subscription and then attempt to pair it to your target’s virtual

130 Chapter 6

network. This is a fairly noticeable thing to do, because the VPN connec-
tion would be clearly visible in the Azure portal, but it would provide a
novel way to maintain persistent access to VMs in the subscription, until
the connection was discovered. If you attempt this, do it in a sparsely used
subscription because the target’s administrators would have direct access
to your systems—VNet-to-VNet VPNs are bidirectional, after all.

For this to work, the target must already have a VPN gateway in their
subscription. From this gateway, you’ll need the gateway’s name and ID
(for example, /subscriptions/Subscription_Id/resourceGroups/Resource_Group/
providers/Microsoft.Network/virtualNetworkGateways/Gateway_Name). You can
obtain both of these values with administrative access to the target subscrip-
tion using this PowerShell command:

PS C:\> Get-AzureRmResourceGroup | Get-AzureRmVirtualNetworkGateway

You’ll also need a VPN gateway in your own subscription and to possess
the same values for your own gateway. With this data, you’d run these com-
mands in your subscription:

$myGateway = Get-AzureRmVirtualNetworkGateway -Name "Local_Gateway_Name" `
 -ResourceGroupName "Local_Gateway_Resource_Group"
$remoteGateway = New-Object Microsoft.Azure.Commands.Network.Models.PSVirtualNetworkGateway
$remoteGateway.Name = "Target_Gateway_Name"
$remoteGateway.Id = "Target_Gateway_ID"
New-AzureRmVirtualNetworkGatewayConnection -Name "V2V" -ResourceGroupName `
 $myGateway.ResourceGroupName -VirtualNetworkGateway1 $myGateway -VirtualNetworkGateway2 `
 $remoteGateway -Location $myGateway.Location -ConnectionType Vnet2Vnet -SharedKey "Key"

You can replace the gateway connection name (here, V2V) and shared
key (Key) with any desired value. You would then run this command in the
target subscription, swapping the target gateway values for your gateway’s
details. At this point, the VPN connection should be established and ready
for use.

ExpressRoute
Site-to-site VPNs work well for many customers, but they are still dependent
on the underlying internet connection between a company and an Azure
datacenter. This path likely requires numerous hops between different
network providers, so latency and bandwidth of the link aren’t guaranteed.
For some mission-critical applications, this uncertainty is unacceptable; in
these cases, ExpressRoute provides a viable alternative.

ExpressRoute is a Microsoft service that allows customers to establish
dedicated circuits between their company and Microsoft’s cloud services.
These connections are built using private lines instead of the internet, have
stable latencies and bandwidth, and provide a service level agreement (SLA).
They are available in speeds from 50MBps to 10GBps.

Because these connections require specific agreements between the
customer, the network provider creating the link, and Microsoft, as well

Investigating Networks 131

as advanced networking knowledge to configure them, you’ll typically
only find these types of connections in large enterprises and institutions.
Because of these requirements, you’re unlikely to be able to target the
ExpressRoute connection itself; however, you may be able to leverage the
connection to access systems that would otherwise be inaccessible.

To determine if your target is using an ExpressRoute, you can use
PowerShell, if you have subscription access, like so:

PS C:\> Get-AzureRmExpressRouteCircuit
 Name : Express_Route_Circut_Name

ResourceGroupName : Express_Route_Resource_Group
 Location : westus

Id : /. . ./Express_Route_Circut_Name
Etag : W/"Id"
ProvisioningState : Succeeded

 Sku : {
 "Name": "Standard_MeteredData",
 "Tier": "Standard",
 "Family": "MeteredData"
 }
CircuitProvisioningState : Enabled
ServiceProviderProvisioningState : NotProvisioned
ServiceProviderNotes :
ServiceProviderProperties : {

 "ServiceProviderName": "ISP",
 "PeeringLocation": "Silicon Valley",
 "BandwidthInMbps": 200

 }
 ServiceKey : GUID

Peerings : []

This command will return all of the ExpressRoute circuits in the cur-
rent subscription, including their names , datacenter region , whether
the connection is billed per GB for data (metered) or is unlimited , which
network provider runs the link , the link location , and the bandwidth .
Additionally, a ServiceKey is provided that other commands use to view or
change settings for the connection .

If you gain access to an ExpressRoute-connected system, understanding
what may be accessible through the link is helpful. An ExpressRoute can
route traffic, between an enterprise and Microsoft datacenters, bound for
three different types of services: Azure private systems, Azure public IPs,
and Microsoft public IPs.

Private peering is a bidirectional link between company servers and
resources running in Azure that are connected to an Azure VPN (for
example, virtual machines). This is the equivalent of site-to-site Azure
VPN connections. So, if you compromise an Azure VM connected to an
ExpressRoute network, you’ll have direct access to the enterprise network
on the other end of the link, and vice versa.

Azure public peering is a one-way company-to-Azure link to services
that Azure exposes publicly (for example, Azure Storage). For this traffic,

132 Chapter 6

the company network can make requests of these services, but the services
cannot initiate communication back to the company. The traffic still travels
through the dedicated link.

Microsoft public peering is a bidirectional link for other Microsoft ser-
vices that are publicly exposed, such as Office 365, Exchange Online, and
Skype. Because these services were designed to be used directly from the
internet, Microsoft discourages routing this traffic through an ExpressRoute
and requires that customers who wish to route such traffic work with their
Microsoft account representatives to enable it. As such, you’re unlikely to
encounter this configuration.

You can determine what type of routes are enabled for a given
ExpressRoute by running these PowerShell commands with the service
key returned by the Get-AzureRmExpressRouteCircuit cmdlet:

PS C:\> Import-Module 'C:\Program Files (x86)\Microsoft SDKs\Azure\PowerShell\
 ServiceManagement\Azure\ExpressRoute\ExpressRoute.psd1'
PS C:\> Get-AzureBGPPeering -AccessType Private -ServiceKey "Key"
PS C:\> Get-AzureBGPPeering -AccessType Public -ServiceKey "Key"
PS C:\> Get-AzureBGPPeering -AccessType Microsoft -ServiceKey "Key"

The first line imports ExpressRoute PowerShell cmdlets that aren’t
automatically loaded with the other cmdlets. Each Get-AzureBGPPeering
cmdlet will return the state of the specified route—enabled or disabled—
as well as the network subnet associated with the connection.

De f e nDe r’s t Ip

The biggest risk with an ExpressRoute connection is that an Azure virtual
machine that is connected to an ExpressRoute virtual network will be com-
promised and used to attack resources on the enterprise’s network. The
best way to avoid this attack is to make sure that no VMs in the virtual
network are assigned public IP addresses. If the VM isn’t public facing, it
can only be attacked from within the subscription or from the enterprise
network, which greatly reduces the risk of a breach. To make sure no such
internet-to-ExpressRoute-to-enterprise bridge is created, a good practice is to
place ExpressRoute connections and any resources that use them into their
own subscription; that way, a public resource can’t be accidentally added to
the ExpressRoute virtual network. Another option is to enable forced tunnel-
ing, which routes all traffic on a system back through the VPN connection.
More information can be found at https://docs.microsoft.com/en-us/azure/
vpn-gateway/vpn-gateway-about-forced-tunneling/.

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-forced-tunneling/
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-forced-tunneling/

Investigating Networks 133

Service Bus
The full network connectivity that VPNs and ExpressRoute offer is great
for complex environments that use lots of protocols, but not every scenario
calls for such a large pipe between the cloud and a corporation. For projects
with a much smaller scope, Azure Service Bus may be a better solution. With
Service Bus, a developer creates an endpoint in Azure that services can com-
municate with and then runs a small agent application on the corporate net-
work that calls out to Azure to receive the incoming work. With this design,
administrators don’t need to open any inbound ports on the corporate fire-
wall because the connection originates from the internal network.

Service Bus offers two different modes of operation: Brokered messaging
is a pull mechanism that caches inbound messages in Azure until the agent
application calls out to pick up any pending work. Azure Relay maintains
a persistent connection between Azure and the agent, so work is pushed
through the pipe immediately and nothing is cached. Both of these mecha-
nisms use the same Service Bus resource; it’s up to the developer to choose
whose messages are received.

The messages that pass through Service Bus are completely at the
discretion of the developer using the service; much like the post office,
Service Bus only handles proper delivery of packets without regard for
their content. Because Service Bus is so flexible, administrators must write
custom code for both the message producer side of the pipe and the con-
suming end in order to create, then interpret and act upon, the messages.
As a result, the Azure portal and Azure PowerShell cmdlets only show the
administrative details of the Service Bus resources (for example, pending
message count and last message received date), but not any details of the
messages themselves. However, you can use an open source utility to exam-
ine the messages.

Obtaining Service Bus Administrative Details

Every Service Bus instance has several properties that can be useful to a
penetration tester: the name of the instance, its resource group, its URL,
and its access key(s). To obtain this information, begin by opening a
PowerShell command prompt, connecting to the Azure subscription,
and then running the following command:

PS C:\> Get-AzureRmServiceBusNamespace

 Name : name
Id : /. . ./ resourceGroups/sbrg/. . ./namespaces/name

 Location : West US
Sku :
ProvisioningState : Succeeded
Status : Active
CreatedAt : 6/24/2019 2:02:22 PM
UpdatedAt : 6/24/2019 3:01:00 PM

 ServiceBusEndpoint : https://name.servicebus.windows.net:443/
Enabled : True

134 Chapter 6

This should display each Service Bus resource within the current
subscription, including its name , resource group (nested within the
Id field), geographic location , and URL . Each Service Bus can also
have multiple access keys. Each key is associated with an authorization rule,
which determines if the key can be used to send messages (a Send right),
receive them (a Listen right), perform administrative actions on the queue
(a Manage right), or some combination of these actions. By default, each
Service Bus has a primary and secondary root key that can perform any
action.

To view the authorization rules used for a given instance, run this
command:

PS C:\> Get-AzureRmServiceBusNamespaceAuthorizationRule
 -ResourceGroup resource_group -NamespaceName name

Id : /. . ./namespaces/name/AuthorizationRules/RootManageSharedAccessKey
Type : Microsoft.ServiceBus/Namespaces/AuthorizationRules

 Name : RootManageSharedAccessKey
Location :
Tags :

 Rights : {Listen, Manage, Send}

This should provide the name of each rule as well as what rights it
grants . You can find details about the exact privileges associated with
each right at https://docs.microsoft.com/en-us/azure/service-bus-messaging/
service-bus-sas#rights-required-for-service-bus-operations.

Once you have a rule name, you can run the following command to
obtain the access keys associated with that rule:

PS C:\> Get-AzureRmServiceBusNamespaceKey -ResourceGroup resource_group
 -NamespaceName name -AuthorizationRuleName RootManageSharedAccessKey

PrimaryConnectionString : Endpoint=sb://name.servicebus.windows.net/;
 SharedAccessKeyName=RootManageSharedAccessKey;SharedAccessKey=Base64_Value
SecondaryConnectionString : Endpoint=sb://name.servicebus.windows.net/;
 SharedAccessKeyName=RootManageSharedAccessKey;SharedAccessKey=Base64_Value
PrimaryKey : Base64_Value
SecondaryKey : Base64_Value
KeyName : RootManageSharedAccessKey

Using either of these keys, you should be able to interact with the
Service Bus instance just as the developer’s applications would.

Interacting with Service Bus Messages

Once you have an access key for a Service Bus instance, you should exam-
ine the contents of the messages going through that channel. Depending
on the messages you see, you might take one of several actions:

•	 If messages contain sensitive data, such as email addresses or credit
card numbers, that is a finding to report.

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-sas%23rights-required-for-service-bus-operations
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-sas%23rights-required-for-service-bus-operations

Investigating Networks 135

•	 For messages that seem to trigger an action, such as order processing,
see if inserting a rogue message will result in an action, such as ship-
ping goods without making a payment.

•	 Send messages with invalid values to see if the receiving application is
vulnerable to common software errors, such as remote code execution,
denial of service, and SQL injection.

Of course, each of these actions require a program that can interact
with Service Bus. Because there aren’t any native Azure tools for this, you
have two options: attempt to modify the developer’s own code, or use a
separate tool. If you’ve already found the developer’s source code during
the engagement (or if you have a copy of their application and you pos-
sess reverse-engineering skills), the first option might be best. This would
allow you to understand exactly what kinds of messages this Service Bus
processes as well as to review the receiver code to look for exploitable mis-
takes, such as insufficient message-validation checks. Additionally, you’d
probably only need to make minor tweaks to create test messages.

In many cases, though, you might not find a copy of the developer’s code.
In these instances, Service Bus Explorer (https://github.com/paolosalvatori/
ServiceBusExplorer/) is your best bet. Service Bus Explorer is a free, open
source tool to examine pending messages, send test messages, and perform
management tasks on Service Bus. Figure 6-5 shows Service Bus Explorer
viewing an unretrieved brokered message from a queue.

Figure 6-5: Service Bus Explorer interface

136 Chapter 6

For particularly busy queues, Service Bus Explorer offers the Create
Queue Listener option; you can access it by right-clicking the name of
a queue. This opens a window that can record messages as they enter the
queue, and it displays statistics about the number, size, and speed at which
messages are processed. After reviewing a number of messages, you can use
the Send Messages option in the same menu to test the receiver’s handling
of rogue instructions.

One last thing to know about Service Bus Explorer is where it caches
its credentials. Like the storage utilities discussed in Chapter 4, Service
Bus Explorer allows users to save any of the connection strings they use.
Therefore, if you find it installed on a system you compromise, check for
saved credentials. These are stored in the same directory as the Service Bus
Explorer application, in a file named ServiceBusExplorer.exe.Config ; this is
an XML file, and the credentials are located in the <serviceBusNamespaces>
section.

Logic Apps
Logic Apps, the most recent entrant to the cross-network communication
field, allow developers and code novices alike to create a trigger for an event
in one of any number of Azure or third-party services that sets off a chain
reaction of other events. For example, a Logic App could monitor Twitter
for tweets containing a company’s name and log them to a SQL database.
The same app could also email the CEO and post to the marketing team’s
Slack channel.

Whereas Service Bus relies on the developer to decide what to do with
an incoming message and write the code to take action on it, Logic Apps do
all of the backend work to tie disparate services together. Users just need to
create a workflow with a simple GUI.

As brokers between other services, Logic Apps don’t offer a large attack
surface. They don’t maintain copies of the data they route, so the selected
destination service decides what to do with the data. But there is one area
of interest for a penetration tester: service credentials. With the ability to
read from or post to everything from Adobe Creative Cloud to Zendesk,
Logic Apps have the ability to cache a lot of credentials or access tokens for
both Microsoft and third-party services. However, all of the credentials are
write-only; once submitted, the keys can be overwritten, but they are never
again revealed to the user.

Although this design does prevent an attacker from stealing service cre-
dentials and using them elsewhere, an attacker can still leverage them for
nefarious purposes. Once a credential is stored, it’s accessible from within
that particular Logic App for all actions related to that service. In other
words, if a Logic App contains an action to read from Twitter, a pentester
can add an action to the app to post a tweet from the same account without
additional authorization, as shown in Figure 6-6.

Investigating Networks 137

As a pentester, if you have access to the Logic App in Azure portal,
you can modify it to perform new actions against the same services that
the app already uses. I suggest doing this in the portal, because Logic
Apps are designed to be created with the GUI-based editor; therefore,
the PowerShell cmdlets for Logic Apps have limited capabilities.

Figure 6-6: Logic App Designer showing the addition of a
Post a tweet action

Summary
In this chapter, we discussed various ways to establish and protect networks
in Azure, as well as ways to leverage these technologies in a penetration
test. We started with firewalls built into Azure, including those used for vir-
tual machines, SQL servers, and web applications. Next, we looked at VPN
options available in Azure, including point-to-site, site-to-site, multisite, and
VNet-to-VNet, and how an attacker could attempt to infiltrate these con-
nections. Then, we discussed ExpressRoute, a dedicated circuit technology
similar to VPNs that large companies use to connect directly to Azure.

138 Chapter 6

Finally, we covered two technologies to connect non-Azure services to
Azure: Service Bus provides a message tunnel for developers looking to
receive information from the cloud, and Logic Apps are designed for non-
developers to build workflows between Azure, other services providers, and
enterprise systems. Take extra care when auditing network components;
though each of these technologies includes security mechanisms, if they are
improperly configured, this could lead to the compromise of an Azure vir-
tual network, a corporate network, or accounts within third-party services.

7
O t h e r A z u r e S e r v i c e S

There was a time when software release
schedules were roughly aligned with the

Olympics—a new version of your favor-
ite operating system, productivity suite, or

game would be released once every couple of years.
Although there may have been some interim updates
and service packs to fix bugs, users eager for new features had to count the
months until they could stand in line to buy a cardboard box filled with
disks or a CD. But the world has moved on from this paradigm, with radi-
cally shortened release schedules, new distribution methods, and even dif-
ferent ways for companies to monetize their products.

This new model is very apparent in Azure, with new service offerings
coming online all the time. In the earlier chapters, I focused on the core
services any enterprise that adopts Azure is likely to use. In this chapter, we
explore some of the newer, lesser-used, or more unique Azure services, and
examine the ones that are interesting from a security perspective.

We start by looking at Key Vault, a mechanism for the secure stor-
age and retrieval of credentials such as passwords and certificates in the

140 Chapter 7

cloud. Then, we discuss some notable aspects of Web Apps, the feature of
Azure App Services for publishing websites. Finally, we close with Azure
Automation, a service to automate management tasks both in the cloud
and on the corporate network.

Best Practices: Key Vault
When storing secrets in Key Vault, you can do several things to add an extra
layer of security, such as tightly controlling access, pre-encrypting secrets,
and using logging. Each of these makes an already-strong service consider-
ably harder to attack.

First, any secret vaulting solution is only as secure as the user with the
weakest security practices. For this reason, it is crucial to limit the number of
people who can access the Key Vault. With role-based access control (RBAC),
very specific, granular permissions can be granted to the Key Vault and
its contents. However, even a very tight set of permissions to the Key Vault
doesn’t help much if the vault resides in a subscription with dozens of users
with owner permissions who don’t need access to the vault. After all, any of
these users could leverage their subscription permissions to grant themselves
access to the Key Vault. To prevent this, I encourage you to consider creating
a separate subscription just for your Key Vault if it is going to hold particu-
larly sensitive secrets. More details about Key Vault hardening are available at
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-secure-your-key-vault/.

If you are using Key Vault to store secrets that won’t be used directly by
another cloud service, it might be worth considering pre-encrypting secrets
before putting them in Key Vault. Key Vault, of course, stores all of its data
in an encrypted format; however, if an attacker compromises an account
that is used to retrieve the secrets, they can retrieve the decrypted secrets.
If you encrypt the secrets locally before uploading them (and store the
decryption keys somewhere offline), an attacker who obtains an account
with access to your vault will only be able to pull the encrypted values and
won’t have the cleartext secret.

As with other services, logging is important for Key Vault too. When
enabled, the logs contain information such as key enumeration, creation,
reads, writes, and deletions. This includes details useful for identifying ille-
gitimate access, such as the caller’s IP address and the account making the
request. More details about Key Vault’s audit logs can be found at https://
docs.microsoft.com/en-us/azure/key-vault/key-vault-logging/.

Examining Azure Key Vault
Azure Key Vault is a service that allows a developer to securely store pass-
words, connection strings, storage keys, certificates, and so on, for use
in other Azure services. As a penetration tester, I love Key Vault because
I can use it as a recommendation to resolve many common pentest find-
ings. And, if a user misconfigures a Key Vault instance, it can be another
source of credentials to further my access into the target environment.

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-secure-your-key-vault/
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-logging/
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-logging/

Other Azure Services 141

It’s no exaggeration to say that I include Key Vault as a potential solu-
tion to findings in most of my reports. In “Obtaining Credentials” on
page 15, I demonstrated how easy it can be to discover passwords and
other secrets in source code repositories, errant configuration files, and
even on developer workstations. Key Vault provides an API—with libraries
and sample code for most major programming languages—that makes it
easy for a developer to keep this sensitive information in a secured, access-
controlled, auditable location. Although Key Vault doesn’t prevent every
developer mistake, it’s excellent for cleaning up secret hygiene issues.

Three different types of storage are available in Key Vault: secrets, keys,
and certificates. Each of these presents a different opportunity for a pen-
tester, as detailed in the following sections.

Displaying Secrets
A secret is a key-value pair consisting of a name and a text value; the text
value can be up to 25KB in size and supports version history. You can view
the secret’s text value within the portal, using APIs, or in PowerShell—
assuming your account has the correct permissions. Because secrets can
be retrieved, Microsoft’s documentation recommends pre-encrypting
secrets with a public key before saving them in Azure if they are particu-
larly sensitive. The private key to decrypt the secret would be placed in
Key Vault’s HSM storage, protecting the private key, and therefore the
secret, from unauthorized access.

If you obtain an account you suspect might have access to Key Vault
instances and their secrets, use PowerShell to enumerate them all at once.
To do this, run the script shown in Listing 7-1.

 PS C:\> $keyvaults = Get-AzureRmKeyVault
PS C:\> foreach ($keyvault in $keyvaults)
>> {
>> $vault = $keyvault.VaultName

 >> $secrets = Get-AzureKeyVaultSecret –VaultName $vault
>> foreach ($secret in $secrets)
>> {
>> $value = Get-AzureKeyVaultSecret –VaultName $vault -Name $secret.Name

 >> Write-Output "$vault`: $($secret.Name) = $($value.SecretValueText)"
>> }
>> }

shhh: BackendDbConStr = Server=mydb;Database=prod;User ID=admin;Password=1234
shhh: password = MyB@dPassw0rd

Listing 7-1: Displaying Key Vault secrets

The script begins by getting a list of Key Vault instances in the subscrip-
tion . Then, in each instance it retrieves a list of all secrets . Finally, for
each secret, it outputs the secret in the format Vault Name: Secret Name =
Secret Value .

142 Chapter 7

Displaying Keys
Key storage allows users to generate or upload RSA asymmetric keys to Key
Vault. Within the vault, the keys can be used to perform cryptographic
operations, such as sign, verify, encrypt, and decrypt using Azure’s APIs.
Once the keys are uploaded, Azure doesn’t allow users to export them,
except in an encrypted backup form that can only be used to restore the
keys back into Azure.

Because no one can export keys, the key storage section of Key Vault
is somewhat less exciting to a pentester than the secret storage. However,
if you have access to an account that has permission to call cryptographic
APIs for keys, you might still be able to leverage them. But before you can
leverage these keys, you’ll need to know how each one is used.

Azure requires each key to have a name, which may hint at its purpose.
It also allows users to associate up to 15 tags (or 256-character name-value
pairs) with each key. An organization chooses how to use these tags, and the
tags may give you additional information about a key’s purpose. Listing 7-2
shows how to display details about every key in every vault within a subscrip-
tion using PowerShell.

PS C:\> $keyvaults = Get-AzureRmKeyVault
PS C:\> foreach($keyvault in $keyvaults)
>> {
>> $vault = $keyvault.VaultName

 >> $keys = Get-AzureKeyVaultKey –VaultName $vault
>> foreach ($key in $keys)
>> {
>> Write-Output $key

 >> Get-AzureKeyVaultKey –VaultName $vault -KeyName $key.Name
>> }
>> }

 Vault Name : shhh
 Name : key1

Version :
Id : https://shhh.vault.azure.net:443/keys/key1
Enabled : True

 Expires :
Not Before :
Created : 8/12/2018 4:54:07 AM
Updated : 8/13/2018 6:09:15 AM
Purge Disabled : False

 Tags : Name Value
 CreatedBy Matt

Attributes : Microsoft.Azure.Commands.KeyVault.Models.KeyAttributes
Key : {"kid":"https://shhh.vault.azure.net/keys/key1/Version",
 "kty":"RSA","key_ops":["sign","verify","wrapKey",
 "unwrapKey","encrypt","decrypt"],"n":"4vaUgZCV3OG...",
 "e":"AQAB"}
VaultName : shhh
Name : key1

Other Azure Services 143

Version : ed2ebbdc51754d45b69bd6551d2d2052
Id : https://shhh.vault.azure.net:443/keys/key1/Version

Listing 7-2: Displaying Key Vault key information

Like the secrets retrieval script, the key script starts by iterating over
Key Vault instances. Within each instance, a list of keys is retrieved and
then the details of each key are printed . The output includes the name of
the vault instance , the key name , the key validity period , the tags ,
and what operations the key can be used to perform .

Once you’ve determined the key’s purpose, you could potentially use
it for the same purpose. For example, if a key is used to sign documents
for proof of authenticity, you could generate a forgery. Or, if it’s used for
encrypting files, you could decrypt those files. There isn’t an easy way to
do this in PowerShell, but Microsoft does offer the KeyVaultClient class in
the KeyVault library, which supports these operations and is available for
.NET and Java. You can find sample code at https://www.microsoft.com/en-us/
download/details.aspx?id=45343.

Displaying Certificates
Certificate storage is a special category under the “secrets” category of Key
Vault. Users can upload PFX files or have Key Vault generate self-signed
certificates or certificate requests. They can then use these certificates, for
example, to secure the communications between users and a custom Azure
application. The key and certificate features of Key Vault both deal with
asymmetric cryptography, but their intended purpose is slightly different.
Keys are used to submit cryptographic operations and have the operations
performed using a private key within secure storage. Certificates can be
used within different applications, such as website certificates that are used
not only for encryption but also to confirm the name of the site (and other
attributes and intended usage), and thus are usable even outside of Azure.

Key Vault will respect the export flags of certificates added to it.
Therefore, if a user imports a certificate marked non-exportable, an
attacker won’t be able to recover it. But if a key is marked exportable, it
can be retrieved just like other Key Vault secrets. In fact, if a user doesn’t
specify an export policy when creating a certificate in Key Vault, it defaults
to exportable. Listing 7-3 walks through listing certificates in Key Vault, view-
ing their details, and obtaining public keys, and, if accessible, private keys.

PS C:\temp> $keyvaults = Get-AzureRmKeyVault
PS C:\temp> foreach ($keyvault in $keyvaults)
>> {
>> $vault = $keyvault.VaultName
>> $certs = Get-AzureKeyVaultCertificate –VaultName $vault
>> foreach ($cert in $certs)
>> {
>> $cn = $cert.Name
>> $c = Get-AzureKeyVaultCertificate –VaultName $vault -Name $cn
>> $x509 = $c.Certificate

https://www.microsoft.com/en-us/download/details.aspx%3Fid%3D45343
https://www.microsoft.com/en-us/download/details.aspx%3Fid%3D45343

144 Chapter 7

>> Write-Output $c
>> $privkey = (Get-AzureKeyVaultSecret –VaultName $vault
 -Name $cn).SecretValueText
>> Write-Output "Private Key:"
>> Write-Output $privkey
>> Write-Output ""
>> Write-Output "Exporting Public Key to $cn.cer..."
>> Export-Certificate -Type CERT -Cert $x509 -FilePath "$cn.cer"
>> Write-Output "Exporting Private Key to $cn.pfx..."
>> $privbytes = [Convert]::FromBase64String($privkey)
>> [IO.File]::WriteAllBytes("$pwd\$cn.pfx", $privbytes)
>> Write-Output "--"
>> }
>> }

Name : devcertificate
Certificate : [Subject]
 CN=test.burrough.org
 [Issuer]
 CN=test.burrough.org
 [Serial Number]
 72AF4152C9F54651B9AE039730FB1AAD
 [Not Before]
 8/13/2018 11:06:23 PM
 [Not After]
 8/13/2019 11:16:23 PM
 [Thumbprint]
 9C5A0E244E353369560EFBE4EDB015D3FDE54635

Id : https://shhh.vault.azure.net:443/certificates/devcertificate/Id
KeyId : https://shhh.vault.azure.net:443/keys/devcertificate/Id
SecretId : https://shhh.vault.azure.net:443/secrets/devcertificate/Id
Thumbprint : 9C5A0E244E353369560EFBE4EDB015D3FDE54635
Tags :
Enabled : True
Created : 8/14/2018 6:16:23 AM
Updated : 8/14/2018 6:16:23 AM

Private Key:
MIIKTAIBAzCCCgwGCSqGSIb3DQEHAaCCCf0Eggn5MIIJ9TCCBhYGCSqGSIb3DQEHAaCCBgcEggYD
--snip--
Exporting Public Key to devcertificate.cer...
LastWriteTime : 8/14/2018 9:23:48 PM
Length : 834
Name : devcertificate.cer

Exporting Private Key to devcertificate.pfx...
--

Listing 7-3: Displaying Key Vault certificates

This final Key Vault enumeration script begins as the others do—by
iterating over Key Vault instances and then certificates. For each certifi-
cate, you need two calls to Azure in order to obtain the details. A call to

Other Azure Services 145

Get-AzureKeyVaultCertificate retrieves public information about the certifi-
cate, including the subject, thumbprint, validity period, and public key .
Then, a call to Get-AzureKeyVaultSecret obtains the private key part of the
certificate, if it’s available . Next, the script exports the public key value
to a certificate file (Certificate Name.cer) in the current working directory .
Finally, a PFX file is created which contains the public key data, and the pri-
vate key information if it was exportable .

De f e nDe r’S t ip

If you don’t intend to use a certificate outside of Key Vault, be sure to mark
it as non-exportable. To do this, pass the -KeyNotExportable switch to the
New-AzureKeyVaultCertificatePolicy cmdlet when creating the certificate. If
you have a very sensitive certificate or key, take a look at Key Vault’s physical
Hardware Security Module (HSM) option. Although this option is a bit more
expensive than the software-based HSM version of Key Vault, the certificates
are placed in an industry-standard cryptography device that’s designed to
prevent private keys from being extracted once added to the device.

Accessing Key Vault from Other Azure Services
Users can configure Key Vault instances to allow access from virtual
machines, Azure Resource Manager, and Azure Disk Encryption in the
Advanced access policy settings in Azure portal, as shown in Figure 7-1.

Figure 7-1: Advanced access policy for Azure Key Vault—
enabling access from other services

146 Chapter 7

Each of these settings has a purpose: virtual machines can store and
access SSL certificates in Key Vault, Azure Resource Manager can create
and deploy templates that need secrets (such as a local administrator pass-
word for a VM template), and Azure Disk Encryption uses Key Vault’s secret
storage to keep its encryption keys for virtual hard disks (VHDs). These are
all perfectly good uses for Key Vault, and are much better than checking
these secrets into source control. However, it also means that a user who has
permissions to administer a virtual machine or to modify and deploy tem-
plates may be able to gain access to Key Vault data they wouldn’t otherwise
have rights to see.

De f e nDe r’S t ip

Because advanced access policies are set at the Key Vault instance level, all
secrets within an instance are subject to the same policies. Therefore, it is a
good idea to create multiple vaults and restrict access to each store to specific
services. Each store should contain only those secrets that are intended to be
used by all of the services that have access to the store.

Targeting Web Apps
A subset of Azure App Services, Web Apps are websites designed to run
on Azure PaaS (Platform as a Service). Developers can write Web Apps in
a variety of languages—such as ASP.NET, PHP, JavaScript, Node.js, and
Python—and run them within a Windows or Linux container. Identifying
these sites is often easy because they have the URL <Site Name>.azurewebsites
.net by default, but developers can give a Web App a custom domain name,
if it’s deployed in a non-free service tier.

Web Apps are interesting targets for several reasons:

•	 They are public (internet) facing, so a defacement could cause reputa-
tional harm to a client.

•	 They use deployment accounts that an attacker may find on developer
workstations.

•	 They are a popular Azure feature and used by many businesses.

•	 Sites in the free tier are often developer test sites with minimal security
planning, yet they may contain secrets for production sites.

•	 Their code sometimes contains credentials to access other services,
such as Azure SQL.

For these reasons, a pentester should always include Web Apps in an
Azure assessment.

Other Azure Services 147

Deployment Methods
When a developer wants to publish their latest revision of a site to Azure,
they must make two choices: what deployment method to use and what cre-
dentials they should use to authenticate. Web Apps support several different
ways to load code into a site:

•	 FTP/FTPS

•	 WebDeploy

•	 Git Repository (local or on GitHub)

•	 Deployment from an external service such as OneDrive, Dropbox,
or Bitbucket

It is good to be familiar with these methods; when you gain access to a
developer workstation, it will help you identify which tools may have cached
credentials or saved copies of source code available.

Web developers have traditionally used File Transfer Protocol (FTP) to
push websites to servers, although it is not a good option because the user’s
credentials and file contents are sent unencrypted. If you discover a devel-
oper using FTP, this should be a finding in and of itself!

Fortunately, Azure also supports FTP Secure (FTPS), which is encrypted
and an acceptable choice. Anywhere you find a saved connection, look at
the protocol before the server’s address to determine which type of con-
nection is being used. Users connecting to FTP will have connections that
begin with ftp:// whereas secured connections will use ftps://.

Another common deployment method is WebDeploy, also called
MSDeploy, which Visual Studio or the msbuild.exe/msdeploy.exe compiler
tool pipeline can use to publish compiled projects. WebDeploy was first
used not for publishing to Azure, but by developers deploying sites to
Microsoft IIS web servers. Therefore, I’m not surprised that it seems to
be commonly used for sites written in Microsoft’s ASP.NET language.
WebDeploy is only available on Windows clients. You may also encounter
users of a tool called WAWSDeploy.exe, which is a wrapper for WebDeploy
that makes it easier to use.

For developers who use git to manage their source code, the ability to
deploy straight from their git client is quite convenient. Given the growth in
git’s popularity, I expect to see the number of developers using this method
increase significantly. To use this method, the developer simply retrieves
deployment credentials and a git repository URL from the Azure portal,
and then uses git to push their site to the remote master branch. Developers
don’t need any special utilities or libraries on their workstations.

Azure also supports an ever-growing list of external services that devel-
opers can use to stage content for Web Apps, such as Visual Studio Team
Server, OneDrive, Bitbucket, and Dropbox. This feature is generically
known as cloud sync, and it differs from the previous methods discussed.

148 Chapter 7

All the other deployment methods are run on a developer’s system, use cre-
dentials obtained from Azure, and push the content into Azure; but cloud
sync is a pull model. The developer authorizes Azure to access their online
storage provider, and then Azure pulls the content into the Web App from a
designated folder in the external service.

Obtaining Deployment Credentials
For every deployment method besides cloud sync, the Web App developer
must provide a username and password when uploading files for their site.
These deployment credentials are different from the user’s Azure portal
login information—that account won’t work to deploy a site. Instead, the
developer can choose to use either a user-specific deployment account or a
site-specific account. Either account type will work for FTP, WebDeploy, and
git deployments; the differences between the two credentials is who shares
them and where they can be found.

User Deployment Credentials

Each Azure user can create one deployment account to add, remove, or
change files in any and every site they have permission to modify, across
all subscriptions they can access. To create this account, or to reset its pass-
word, the user must do the following:

1. Log in to the Azure portal and navigate to App Services.

2. Select any Web App in their subscription (or create a new one if none
exists).

3. Click Deployment Credentials.

4. Specify a username and password.

Once the account is created, the account holder can use it across
any of their Web Apps, with only a slight variation between sites. To
connect to each site, the user must enter the username in the format
<Website Name>\<Username> and specify their password. For example,
suppose the developer chose the username webadmin and specified
Awe5omeDev# as their (relatively weak) password. To manage the website
http://azweb8426.azurewebsites.net/, the developer would enter azweb8426\
webadmin as the username in their chosen deployment tool and enter
Awe5omeDev# as the password. If the developer later wanted to work on
http://bkunaenk.azurewebsites.net/, they would enter bkunaenk\webadmin as
the username and Awe5omeDev# as the password.

Because the same credentials are used broadly across all sites, an
attacker who compromises it can modify any site this developer has access
to—even unrelated sites that happen to be in the same subscription and
have overly broad permissions. Consider a subscription with 50 administra-
tors, where each administrator owns and manages one site, but none of

Other Azure Services 149

them has changed their site’s owner or contributor access permissions—so
anyone with subscription access has permission to modify the site. A devel-
oper with just a personal blog might not put much effort into protecting
their credentials, whereas another developer who runs the company’s home
page may closely guard their password. In this scenario, the first developer’s
credentials would be able to make changes to the latter’s site! This also
applies to cases where a single developer owns multiple Web Apps, only
some of which are important.

So, where can you find a user’s deployment credentials? This depends
on the user, but in general, you might find them saved in FTP clients, pass-
word managers, or a git credential store file such as .git-credentials within
the user’s home directory. But if the user is leveraging WebDeploy or FTP
through Visual Studio, you’re probably out of luck. Visual Studio saves the
user’s password in an encrypted blob within an XML file named <Website>
-<Method>.pubxml.user, such as bkunaenk-FTP.pubxml.user. Additionally, this
blob contains details about the workstation and user it’s associated with, so
you won’t be able to use it in a different user’s session or on a different PC.

n O t e You can reset the deployment account in the Azure portal without knowing the cur-
rent password, so if you have portal access, you can always change the password
to a different value. However, the user is likely to notice if their account suddenly
stops working with the expected password. It should also be noted that the deploy-
ment account itself doesn’t grant access to the portal, only the ability to change Web
App files.

App Deployment Credentials

The other type of credentials for deployments is app specific. Each Web
App gets a single deployment credential that is shared between all develop-
ers of that site, and they can use it in all the same places as a user deploy-
ment account: FTP, WebDeploy, and git.

This type of account presents a slightly lower risk than user deploy-
ment credentials, because if the credential is leaked, it can only be used to
modify a single site. However, the credential is only as secure as the devel-
oper in possession of it with the worst security hygiene. Additionally, if an
attacker compromises a credential that is accessible by multiple users, it
may be hard to determine where the breach occurred. Finally, shared
accounts are often not reset when an employee leaves, is fired, or changes
roles, so a user’s access may persist longer than it should.

The Azure portal doesn’t display app deployment credentials. Instead,
developers can obtain them by navigating to the Web App in the Azure
portal and then clicking the Get publish profile button on the Overview tab,
as shown in Figure 7-2. If an administrator is concerned that an account is
compromised, they can reset the credential using the Reset publish profile
button on the same toolbar.

150 Chapter 7

Figure 7-2: Obtaining a publish profile for a Web App

The Get publish profile button initiates a download of a file named
<App Name>.publishsettings. You may recall Publish Settings files from
Chapter 2 (page 23), which are XML files that contain a management
certificate for a subscription. These Publish Settings files are also XML
documents, but in this case, they contain details about a Web App instead
of a subscription. Each Web App’s Publish Settings file contains the fol-
lowing items:

•	 The Web App target URL

•	 URLs to use for WebDeploy and FTP deployments

•	 The app deployment username, which is always <App Name>\
<App Name>$

•	 The app deployment password, which is a plaintext, 60-character,
alphanumeric string

The file may also have some optional data, such as connection strings
for databases the app relies upon and the URL of the Azure portal.

Because the password for this account isn’t encrypted, another user can
copy a Web App’s Publish Settings file and use it from a different computer.
So, if you obtain access to a developer workstation or a code repository,
search for these files because they’ll contain all the information needed to
connect to the Web App server.

Creating and Searching for Artifacts on Web App Servers
Once you have access to an app server, there are a few things you might
want to do. First, if you need to prove to your client that you gained access
to the server, consider dropping a small text file with a .config extension stat-
ing you were there. This kind of flag is far better than making a publicly
visible change, and because app servers don’t expose .config files to web
browsers, users of the site won’t be able to see it; only administrators who
log in to the server can.

Other Azure Services 151

You can also use the server to try to capture credentials by modifying
the Web App to covertly store logon information for you in a secure way.
Alternatively, you could add a page to the site to use for phishing, which
users would likely trust since it’s hosted on a legitimate site.

W A r n i n g Always be sure that your rules of engagement allow for this kind of activity before
modifying or adding pages on a public-facing site—especially if you’re adding code
to exfiltrate user information or credentials. This is often off limits in penetration
tests! If there’s even a little doubt, check with your client and attorney. As always,
you should also make sure to record and account for any changes you make, in
order to completely undo all changes at the end of your engagement.

My favorite thing to do when I compromise web servers is to look for
secrets that aren’t exposed to the site’s users. For example, .config, .asp, .aspx,
and .php files are usually not directly served to users if requested. Because
.config files often contain secrets, they aren’t returned at all, whereas ASP
and PHP files are rendered on the server first, with just the client-ready
result returned. By accessing these files through FTP, you can view the
original code with any embedded secrets intact. You can often then pivot
further into database servers or other backend systems.

Aside from non-served files, app servers may contain files that are
simply hard to find. For example, a developer may upload pages to the
server but delay linking to them on other pages in the site until a specific
time, such as when a new product is announced. And some developers
might create pages intended for only those people who know how to find
them, such as administrator logon forms. Discovering files like these might
warrant a finding, if the information would harm the client when revealed
or if the information is relying on “security through obscurity” for protec-
tion. Confidential data simply shouldn’t be accessible on a public-facing
website, even if it isn’t easily discoverable.

Best Practices: Automation
Azure Automation is a powerful tool for automating repetitive tasks both in
the cloud and on-premises. However, its ability to perform a wide variety of
tasks also makes it a security concern if used by a malicious actor. Here are
some steps to help keep your Azure Automation jobs secure.

Begin by being cautious about what values, or assets, you place in Azure
Automation’s variable storage. Automation gives users the ability to store
things like credentials, which can then be used by jobs to access resources
they need to do their work. Assets are stored encrypted, but since the run-
ning job needs to be able to use them, the decryption key is stored in a Key
Vault that is accessible to Automation. This means that anyone who can
create and run a job is able to retrieve the cleartext value of any asset, as
described in “Obtaining Automation Assets” on page 152. If you’re storing

152 Chapter 7

credentials as assets, be sure these credentials have the fewest rights pos-
sible to accomplish their task.

Next, if you plan to have Automation kick off tasks in your corporate
environment, you’ll need to set up Hybrid Workers, which involves install-
ing an agent onto on-premises systems, described in depth on page 157.
By default, these agents will run jobs using the local system account on
these servers, meaning the jobs will have full administrative access to the
server where they’re run. Therefore, you should never configure a sensitive
system as a Hybrid Worker. Although Hybrid Workers and the jobs they run
will certainly need some level of access to resources to complete their tasks,
make sure to create a good threat model and consider any risks that may
come with this type of cloud-to-corporate access.

Leveraging Azure Automation
One final service worth discussing is Azure Automation, which is essen-
tially a sophisticated task scheduler for the cloud. Administrators create
runbooks, or workflows of tasks, using PowerShell or a graphical editor in
the Azure portal. A runbook can perform a wide variety of actions. For
example, it might parse a log file every five minutes and then send an alert
to an administrator if a critical error occurred. If a task is repetitive, uses
cloud resources, and can be scripted in PowerShell, it’s a good candidate
for automation.

Although Azure Automation is a complex service with many features,
two components are of particular interest to a security professional: assets
and Hybrid Workers. Automation assets are another location in Azure where
users can keep secrets, similar to a Key Vault instance. Hybrid Workers allow
a runbook to perform tasks using on-premises resources, not unlike some of
the network bridging technologies in Chapter 6.

Obtaining Automation Assets
Anyone who has spent time working in system administration has likely
written dozens, if not hundreds, of scripts to make their work more efficient
and less tedious. Although such scripts vary considerably between authors,
organizations, and target platforms, almost every script has variables and
input data. Often, this includes the account that the script should use to
perform its actions, a list of systems to target, and a location to log any
output.

Azure Automation needs to allow such input so its runbooks can offer
more than the most basic functionality. But unlike traditional scripts, run-
books are executed by Azure, not by a user from a command line. To address
this gap, Azure Automation allows users to declare and save variables, creden-
tials, connections, and certificates—generically referred to as assets—within

Other Azure Services 153

the Automation service. Runbooks can then reference those assets, but they
aren’t runbook specific; they are shared between all runbooks within an
Automation account. Although a subscription may have multiple Automation
accounts, assets aren’t sharable across those accounts.

Let’s discuss each of the four asset classes, which are similar but have
subtle differences:

Variables
When defining a variable, the developer provides a name, a data type, a
value, and an optional description, and specifies if Automation should
store the value encrypted. Variables can be any of the following types:
Strings, Booleans, DateTimes, Integers, or Other (“Not Specified”).
If the encrypted flag is set, the Azure portal won’t display the data
type for that variable, and the value field will be displayed as asterisks.
However, because runbooks need to be able to use the value, users
can display variables, regardless of their encryption status, using the
Get-AutomationVariable cmdlet within a runbook.

Connections
Connections are used to log in to Azure subscriptions within a runbook.
Users can retrieve connections with the Get-AutomationConnection cmdlet,
which returns a hash table with the values from the following keys inside:
SubscriptionId, ApplicationId, TenantId, and CertificateThumbprint. Typically,
these values are used in a subsequent call to Add-AzureRMAccount to connect
to the desired subscription. Connection objects themselves don’t contain
any secret data.

Credentials
In Azure Automation, credentials are stored in PSCredential objects
and consist of an object name, a username, a password, and an optional
description. Like encrypted variables, credentials are encrypted in
Azure portal to protect their passwords. Even after using the Get
-AutomationPSCredential cmdlet to retrieve the credential, Azure won’t
display the value, because it expects developers to pass the entire
returned PSCredential object to any system needing the account.
However, users can display the password and username by calling
the GetNetworkCredential function on the PSCredential object.

Certificates
Users can upload X.509 certificates in either .cer (public key only)
or .pfx (public and private key) form to Azure Automation. When an
Automation account is created, Azure provides an option to automati-
cally populate the certificate store with two certificates that can be
used to manage ASM and ARM resources: AzureClassicRunAsCertificate
and AzureRunAsCertificate, respectively. If the user declines this option,
Azure prompts them a second time to confirm, because these cer-
tificates are helpful for completing tasks in Azure. So, you should

154 Chapter 7

expect to see these certificates in almost every Automation account
you encounter. Although a user could upload certificates for any pur-
pose, certificates in Automation are usually used in conjunction with
connections to manage other Azure resources. You can retrieve cer-
tificates using the Get-AutomationCertificate cmdlet, which retrieves the
certificate’s details, public key, and the private key, if present.

Using the cmdlets and functions just discussed, you can create a
runbook to collect asset values that may help further your infiltration
into the client’s environment. Start by opening the Azure portal and
selecting Azure Automation from the service list. In the Automation
Accounts window, check for any existing Automation accounts, as shown
in Figure 7-3.

Figure 7-3: List of Azure Automation accounts

If none are listed, the target subscription isn’t using Automation
and you can skip this section. If multiple accounts are listed, you’ll want
to perform the steps in this section for each account. Click the name of
an Automation account to open it. You should then see a view similar to
Figure 7-4.

Once a specific account is displayed, you can browse around to get
an idea of how Automation is being used. Click Runbooks and review the
names of the scripts. If any sound interesting, click them and then click
Edit to view their source code—just be sure not to save any changes to
them. You can also quickly browse the available assets by clicking the vari-
ous tabs under the Shared Resources section in the menu on the left in
Figure 7-4, but Azure won’t display any secret values.

To display all of the assets, including passwords, encrypted variables,
and certificate private keys, click Runbooks and then click Add a runbook
at the top of the page. In the menu that appears, click Create a new run-
book and then provide a name for the runbook and select PowerShell as
the runbook type. Finally, click Create.

Other Azure Services 155

Figure 7-4: Main view of an Automation account

A blank runbook will appear. On the left
side, a tree view provides a helpful list of avail-
able PowerShell cmdlets, other runbooks, and,
most importantly, assets you can use. Expand
the Assets object as well as each nested item, as
shown in Figure 7-5.

For every asset that sounds interesting, you
can click the ellipsis menu next to the asset
name and click Add to canvas. This will add a
new line of code to the runbook that retrieves
that asset. For variables and connections, this
is sufficient to display the interesting parts of
those elements. However, for credentials and
certificates, you’ll need to add a few extra lines
of code to get the passwords and private keys.

Figure 7-5: List of assets
available for the runbook

156 Chapter 7

For passwords, store the output of the Get-AutomationPSCredential creden-
tial in a variable and then use GetNetworkCredential() to get the username
and password values, like so:

$cred = Get-AutomationPSCredential -Name 'credential_name'
$cred.GetNetworkCredential().username
$cred.GetNetworkCredential().password

When looking at a certificate, I like to display the certificate’s name and
thumbprint, as well as its public and private keys as XML. This should be
sufficient to import the certificate into a different system for use outside of
Azure. To do this, put the following in the runbook:

 $cert = Get-AutomationCertificate -Name 'certificate_name'
 $cert
 $cert.PrivateKey.ToXmlString($true)
 $cert.PublicKey.Key.ToXmlString($false)

This will save the certificate object into a variable , display its thumb-
print and subject , and output its private key and public key . Figure 7-6
shows the completed runbook ready to execute.

Figure 7-6: Completed runbook to retrieve assets

Other Azure Services 157

Once you are satisfied with your runbook, click Save and then click
Test pane. This will open a new view where you can click Start to execute
the runbook. Once the runbook is finished, any output will be displayed
in white, as shown in Figure 7-7. If your runbook had any exceptions, error
messages will be displayed in the output area in red.

Figure 7-7: Runbook Test pane with output

From the Test pane, you can see the completed runbook execution as
well as the variable values, connection details, credential username and
password, certificate details, and the public and private keys you requested.
You can then use this information to pivot into subscriptions, services, or
systems that may have been previously inaccessible.

Hybrid Workers
In addition to being able to automate tasks in the cloud, Azure Automation
also has the ability to perform tasks on a corporate network. Azure provides
a package that an administrator can install on several on-premises systems.
These machines then become Hybrid Workers that receive commands from

158 Chapter 7

Azure Automation and execute them on the corporate network. This is sim-
ilar to the network bridging technologies discussed in Chapter 6; however,
those services were designed for moving data between a company and the
cloud, whereas Hybrid Workers are meant for sending management com-
mands to corporate systems.

Hybrid Worker Mechanics

Setting up a Hybrid Worker isn’t trivial. Administrators have to create an
Operations Management Suite (OMS) account at https://mms.microsoft.com/,
enable the Automation solution in the OMS portal, download and install a
program called Microsoft Management Agent on the machines they want to
be Hybrid Workers, and then run the New-OnPremiseHybridWorker.ps1 script
on those systems—specifying which subscription and Automation account
the worker should use. So, you aren’t likely to find a Hybrid Worker in every
automation account—but those that do have one are likely making use of it.
This is good news for a pentester because it means Hybrid Worker systems
are often online and have access to interesting accounts and systems on
their corporate networks.

Once installed, the Hybrid Worker operates by running the System
Center Management Service host process, called MonitoringHost.exe, which
polls an azure-automation.net server over HTTPS, looking for work. Once it
finds a job, it spawns an instance of Orchestrator.Sandbox.exe, which then runs
the runbook script. If needed, Orchestrator.Sandbox.exe may launch conhost.exe
processes to run non-PowerShell commands. By default, all of these pro-
cesses run as the NT AUTHORITY\SYSTEM account, which means that run-
books have administrative access to the system acting as a Hybrid Worker,
but they don’t automatically have access to other systems on the domain.
This is where credential assets—credentials stored within Azure automation
for use within runbooks—come in; if a runbook needs to access a differ-
ent system on the corporate domain—to copy files from a network share,
for example—it needs to use an account with those privileges. Either the
runbook developer can use the credential directly in the script with the
Get-AutomationPSCredential cmdlet or they can set the Hybrid Worker to run
all scripts in the context of a credential asset. Either way, the developer
must store the credential in the Automation account.

Identifying Hybrid Workers

Determining if an Automation account contains Hybrid Workers is easy: in
the Azure portal, navigate to an Automation account instance and then click
Hybrid worker groups in the account’s menu. There may be one or more
worker groups listed; each group is a pool of one or more Hybrid Workers
that can be assigned work. To see what machines are in a given group, click
the group name. This will open the group, as shown in Figure 7-8.

Other Azure Services 159

Figure 7-8: A Hybrid Worker group blade

From this pane, you can see the list of individual servers’ names in this
group by clicking the Hybrid Workers tile. You can also see if the workers
in this group are running as the default Local System account or using
a credential asset by clicking Hybrid worker group settings, as shown in
Figure 7-9.

Figure 7-9: Hybrid worker group settings showing a
custom credential being used

All Hybrid Workers in a given group run using the same credential.

Using Hybrid Workers

When I find an Automation account with Hybrid Workers, I’m immediately
curious what I can do with it. If you’re an outsider using Automation as your
entry point into the network, you may not have any idea what the Hybrid
Worker servers or the credential assets can access. A good way to get started
is by reviewing any existing runbooks in the account. This way, you’ll learn
how the subscription is using Automation, as well as at least a few systems

160 Chapter 7

that can be used with the credential assets. To do this, select the Runbooks
tab in the Automation account in Azure portal; then click any runbook and
click the Edit button. This will show the source code.

In the Automation Account pane, you may also want to review the
Activity Log and Schedules tabs. The Activity Log tab lets you review any
jobs that have run recently, as well as see whether anyone has made any
changes to runbooks, Hybrid Worker groups, or assets. The Schedules tab
shows any upcoming runbook executions, which can be useful if you plan
to modify an existing runbook and need to know which one will run next.

Once you have some knowledge of the Automation account, you might
create or modify a runbook to get code running on a Hybrid Worker. To do
this, follow the same steps for creating a runbook as we did in “Obtaining
Automation Assets” on page 152. A good initial test runbook might look
like this:

Write-Output "Hybrid Worker Computer Name: $env:COMPUTERNAME"
Write-Output "Worker running as: $(whoami)"
Write-Output $host

This runbook displays the assigned worker’s name, the account the
script is running as, and some information about the host process.

Once the runbook is complete and you open the Test pane, you will
see an option labeled Run on. Instead of Azure, select the Hybrid Worker
button, and then from the Choose Hybrid Worker group drop-down list,
select the group you want to execute the code. You can’t choose a specific
worker for the runbook; Automation will assign the job based on its sched-
uler. Once you click Start, the job will be sent to a worker, and the results
will be displayed in the Test pane—just as they were when the runbook ran
on Azure, as shown in Figure 7-10.

Figure 7-10: Completed runbook execution on a Hybrid Worker

Other Azure Services 161

At this point, you have a pretty ideal penetration testing setup. You have
an externally accessible entry point into a private network, credentials for
that network, and existing scripts to provide a starting point. From here,
you can use your favorite PowerShell commands for post-exploitation to
explore the network, pivot to other systems, collect loot, and more.

Summary
In this chapter, we looked at three services that are unique to Azure: Key
Vault, Web Apps, and Azure Automation. Each service offers both a chal-
lenge and an opportunity for information security professionals. Key Vault
can solve many of the issues pentesters identify, but it can also have its
own problems if misconfigured. Web Apps make development and deploy-
ment of new sites very easy, but with some risk of credential management
problems. And while Azure Automation is a complicated service to learn,
the most interesting components from a security perspective are similar to
concepts you’ve seen used in other parts of Azure, such as Key Vault and
Service Bus, with similar risks and threat models.

In the next chapter, we’ll switch gears and look at ways that Azure’s
security monitoring features can detect and alert on illicit activities.

8
M o n i t o r i n g , L o g s , a n d a L e r t s

A paradox exists for penetration testers
in that we are frequently trying to evade

detection while simultaneously hoping the
defenders stop us in our tracks. An offensive

security professional’s job is not only to find and
explain vulnerabilities in our clients’ systems but
also to make those charged with monitoring and securing the enterprise
better at what they do. Penetration tests can help determine where the gaps
are in defenders’ rules and alerts and also keep defenders sharp and well-
practiced in case a real adversary arrives.

This final chapter is a departure from the pentest techniques and tools
covered in the previous chapters. I describe monitoring tools, logs, and alerts
that defenders should be reviewing to detect the kinds of attacker movements
described in the rest of the book. If a blue team is making use of these
resources, it will be much harder for an attacker to make headway without
being found and evicted.

164 Chapter 8

I begin with Azure Security Center (ASC), an Azure feature that con-
solidates security recommendations and events from different services and
systems. Then I describe the Operations Management Suite (OMS), which
collects events and provides centralized management of systems in Azure,
corporate networks, and other cloud providers. Next, I cover the Secure
DevOps Kit, a package of scripts to secure a subscription, enable important
alerts, and provide continuous assurance. Finally, we look at collecting Azure
service logs outside of management tools.

Azure Security Center
Azure Security Center is a service offering in Azure that condenses key
security information into a single view. By consolidating this data, Security
Center enables administrators without the support of full-time security
staff to quickly validate the security of their services. Teams that do include
defense personnel can cover more subscriptions and free up staff to spend
more time being proactive. Not having Azure Security Center enabled in a
subscription is a pentester’s finding in and of itself.

While previously limited to security events from Azure services,
Security Center began accepting events from non-Azure-based systems in
mid-2017. This is referred to as hybrid security and is available to users of
Azure Security Center’s paid tier of service. Azure Security Center analyzes
logs from external systems that are imported to OMS workspaces, which are
described in “Setting Up OMS” on page 169.

Security Center has two main components: detection and prevention.
Detection flags potentially illicit activity made against the subscription’s
resources, and prevention examines the configurations of services to identify
missing security controls. Let’s examine both in more depth.

Utilizing Security Center’s Detection Capabilities
A key requirement for any defender is threat detection and alerting. Security
Center monitors VMs and SQL databases by reviewing logs and installing
a small monitoring agent on the VMs. When Security Center detects an
anomaly, an alert is generated in the Security Center pane within the Azure
portal, as shown in Figure 8-1. Optionally, Security Center can generate and
send an email to designated security contacts or the subscription owners.

n o t e Threat detection capabilities are only enabled for customers using the paid (Standard)
tier of Security Center, which has a monthly charge based on the number of VMs and
databases in the subscription. The Security Center tier is set at a subscription level, so
individual resources cannot be opted in or out of the service. If a client wants threat
detection for production workloads but balks at paying Security Center’s fees for test
systems, then consider having them split resources into two subscriptions—one using
Security Center’s paid option and one using the free edition. Ideally, Security Center
would monitor all nodes, but security recommendations must often compete with
budgetary realities.

Monitoring, Logs, and Alerts 165

Figure 8-1: Azure Security Center main view with alerts

Security Center alerts on a variety of threats, from host-based detec-
tions to network events. Here’s a list of some of the alerts available:

•	 Brute-force login attempts to Remote Desktop

•	 Brute-force login attempts to SSH

•	 Presence of a binary with a name that matches known malware

•	 Execution of a binary with a known-malware signature

•	 When a binary performs a suspicious action (determined through
heuristics)

•	 SQL injection attempts against databases

In addition to noting the resource where the alert was triggered,
Security Center also provides details about the event and recommenda-
tions for how to remediate the problem, as shown in Figure 8-2. Here, an
administrator can see the name of the suspicious program, where it was
run, who ran it, why it is considered dangerous, and steps for how to cor-
rect the problem.

166 Chapter 8

Figure 8-2: Azure Security Center detection alert

One often-overlooked security benefit of running services in the cloud
is that the cloud provider can watch for trends across all of their services.
They can then use this information to better detect threats against their
customers’ resources. For example, Microsoft tracks IP addresses of known
cybercrime groups and monitors Azure VMs for outbound traffic to these
systems in order to detect attacker command-and-control communications.
With Azure Security Center, Microsoft can add new alerts over time as new
hacking and detection techniques emerge, and these updates take effect
immediately for Azure customers without any intervention needed.

Monitoring, Logs, and Alerts 167

Utilizing Security Center’s Prevention Capabilities
Aside from alerting, Security Center also provides proactive security advice
for a number of services. The recommendations aren’t a replacement for
proper planning, threat modeling, and security assessments but rather are
preventive tips that can help eliminate some of the most prevalent secu-
rity mistakes. Prevention advice is included in both the free and paid tiers
of Security Center.

For example, Security Center will check to make sure VMs are fully
patched and are running endpoint protection software. It will also suggest
applying Azure Disk Encryption to VMs, which would prevent the offline
VHD analysis attack described in Chapter 5. Outside of VMs, Security
Center will check that encryption is enabled for Azure SQL databases and
storage accounts to protect data at rest, as shown in Figure 8-3.

Figure 8-3: Azure Security Center preventive recommendations
for SQL and storage

Additionally, prevention alerts can help make sure security doesn’t
regress over time as users deploy new resources or as services undergo
maintenance. If an administrator neglects a VM and fails to install patches,
it will be very obvious because the compute status tile on the Azure Security
Center blade’s main page will turn red with alerts. If an engineer temporar-
ily disables a firewall for troubleshooting, this triggers an alert. But perhaps
most importantly, if a new security feature is added to Azure that the client
hasn’t used before, Security Center will alert the client that their services are
no longer making use of every available protection. Given the quick pace of
Azure updates, following all current best-practices is hard, but Azure Security
Center can help take this task off of an administrator’s plate.

168 Chapter 8

If you discover uncorrected prevention alerts during an assessment, you
should discuss this with the client. Here are some explanations the client
might provide:

•	 They don’t bother, or have time, to look at Security Center.

•	 They believe a particular alert isn’t important or applicable, or they
have resolved the concern through some other control.

•	 They feel resolving an alert would be too expensive, or the fix wouldn’t
be compatible with their deployment.

•	 They think Azure is triggering a false positive.

 Have a deeper conversation to really understand what’s happening in
any of these cases. If the client is ignoring Security Center entirely, I’d be
concerned they aren’t properly prioritizing security. Security Center is one
of the easier security tools on the market to use, and they should be using
it. If they believe they solved an alert some other way, you should confirm
that their fix does indeed address the threats implied by the alert. If the
customer has done a cost-benefit assessment and decided that the solutions
for the flagged risks are too expensive, that can be hard to argue with, but
in those cases, be sure the customer understands the exact nature of the
threats they are accepting.

Finally, if an alert is a false positive, let the customer know they can
click an alert and select Dismiss to hide it. They can also disable an entire
category of prevention policies within a subscription by going to Security
Center, selecting Security Policy, clicking a subscription name, clicking
Prevention Policy, and then toggling any ruleset to Off. However, they
should be absolutely sure that it’s really a false positive. In that case, they
might also consider submitting feedback to Microsoft. To date, I have yet to
encounter a legitimate false positive in Security Center’s preventive ruleset.

Operations Management Suite
Azure Security Center is built to give IT administrators a view of security-
related issues in their services. Although that’s great for seeing a summary
of threats in one view, it means that teams need to look elsewhere to review
non-security-related events or perform non-security-related administrative
tasks. To address the difficulty of managing systems across multiple envi-
ronments, Microsoft offers Operations Management Suite (OMS), a cloud-
based platform that can aggregate logs, alerts, and automation from both
on-premises and cloud-hosted systems and services.

n o t e Microsoft has added many of the security features that were originally exclusive to
OMS into Azure Security Center, including the ability to query logs from systems
outside of Azure. This gives defenders the ability to use a single blade to monitor their
entire environment. However, these features can still be accessed via OMS as well,
and both systems utilize the same OMS workspaces.

Monitoring, Logs, and Alerts 169

OMS allows users to enable various solutions, or modules, to provide
specific capabilities. One of the core solutions is Security and Compliance,
which monitors the state of antimalware services on hosts, threats against
systems, and patch levels. OMS also has other solutions that can increase
security awareness, such as Active Directory health checks, Azure Network
Security Group analytics, SQL Server assessments, and Key Vault analytics.
There are also non-security-related solutions in OMS, such as the automa-
tion component used to enable Azure Automation Hybrid Workers, which
you saw in Chapter 7.

Setting Up OMS
Because OMS ties the management of multiple environments together, it
requires some setup. To use OMS to monitor services, perform the follow-
ing steps:

1. Create an OMS workspace at https://mms.microsoft.com/.

2. Enable any desired solutions in the OMS workspace.

3. Enable Log Analytics for any Azure services OMS will monitor.

4. Install an agent on any non-Azure servers to be monitored.

First, the administrator creates a workspace, which is OMS’s equivalent
to an Azure subscription. Multiple people can share a workspace, and com-
panies can choose to have more than one workspace if they want to split up
the management of different systems to different groups of people.

Second, the administrator needs to add solutions to their workspace.
Each solution represents a different type of log, agent, or service that OMS
can use. Within the subscription, there is a gallery, which is represented
by a shopping bag icon and contains dozens of available solutions. OMS
users can click any solution to get a more detailed description of its capa-
bilities and any associated costs, if it has any, or to enable the solution in
their workspace. Workspaces can contain as many solutions as users need.
Figure 8-4 shows some of the offerings in the gallery.

Third, service logs need to be forwarded to OMS for any Azure-specific
solutions that an administrator enables. For OMS to be able to analyze logs,
it needs access to them, but Azure’s logs aren’t automatically made available
to OMS. Instead, an administrator with the necessary rights in both the
Azure subscription and the OMS workspace must log in to the Azure portal
and enable log forwarding for each resource managed in OMS. Although
this can be somewhat tedious when first configuring OMS, it allows admin-
istrators to select individual instances of services within a subscription for
monitoring; this prevents over-sharing of data, allows different services to
have logs sent to different workspaces (for example, test services logs go to
one workspace while production logs go to another), and prevents OMS
from becoming cluttered with logs from resources a customer doesn’t want
to track.

170 Chapter 8

Figure 8-4: Operations Management Suite gallery

To enable these logs, the administrator performs the following
steps:

1. Navigates to the service within Azure that corresponds to the OMS
solution they enabled.

2. Selects an instance of that service and then clicks the Diagnostics
logs tab.

3. Enables the diagnostic log, if it isn’t already on.

4. Specifies a name for the log—often the name of the resource.

5. Checks the box Send to Log Analytics.

6. Clicks the Log Analytics Configure button and then selects one of the
OMS workspaces listed.

7. Checks any boxes indicating what type of logs to collect, such as
Audit logs.

8. Clicks Save.

At this point, logs should be flowing to OMS, which will begin ana-
lyzing them and displaying results after a short delay. An example of
enabling log forwarding to OMS for a Key Vault instance is shown in
Figure 8-5.

Monitoring, Logs, and Alerts 171

Figure 8-5: Enabling Log Analytics for a Key Vault resource

The final step to setting up OMS is to enable data collection from non-
Azure systems. This includes on-premises servers and VMs running in other
cloud providers. For these systems, Azure offers Windows and Linux agent
applications that run as a service and forward any relevant data to OMS for
analysis and alerting. OMS users can download these agents by clicking the
Settings button in OMS, selecting Connected Sources, and then clicking
the Download agent button in the Windows Servers and Linux Servers tabs.
These pages also provide agent ID values and OMS keys, which are used
during the agent installation to direct the logs to the correct workspace.

In addition to agents, OMS users can also download an OMS Gateway
application from the Connected Sources page. This application allows
agents installed on servers—in a restricted network environment with no
outbound internet access—to forward their logs to a central gateway, which
then passes the logs on to OMS. You can find more information about the
connectivity requirements of OMS at https://docs.microsoft.com/en-us/azure/
log-analytics/log-analytics-oms-gateway/.

Reviewing Alerts in OMS
Once fully configured and receiving log data, OMS should begin to display
log status on the workspace home page. This is useful to see how many
hosts are checking in, but it isn’t the best view for tracking down events.
For that, OMS has two other panes: My Dashboard and Log Search.

The My Dashboard pane allows users to select individual metrics avail-
able from the enabled solutions and add them to the dashboard. Users can
then rearrange them and opt for different visualizations for the data, such
as bar graphs, line graphs, or counts. This way, an OMS user can determine
what particular events are important to them and see only relevant data in
the portal. Users can also share dashboards or create multiple dashboards
using the View Designer page in OMS.

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-oms-gateway/
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-oms-gateway/

172 Chapter 8

Log Search, an aggregate of all incoming data to the OMS workspace,
allows users to search for specific events. The search pane uses Microsoft’s
Azure Log Analytics Query language, which allows a user to query based on
resource, event type, time range, platform, and more. Fortunately for users
not interested in learning a new language, OMS offers filter options to the
left of the results to further scope the data—much like a consumer might
filter product attributes on a shopping website. Users can start with a wild-
card search (*) to show all records, then filter them with the GUI, as shown
in Figure 8-6.

Figure 8-6: Log Search and filtering in OMS

n o t e Log Search is also accessible within Azure Security Center by clicking Search from
the left menu bar. OMS and Security Center both contain the same workspaces and
events, and they use the same query language, so you should get the same results
regardless of how you access Log Search.

Although the OMS portal is a great place to keep an eye on trends
across environments, security personnel need to know when an attack
occurs, even if they’re away from their screens. For this, OMS has the
ability to perform actions when a certain event occurs or a metric goes

Monitoring, Logs, and Alerts 173

outside a specified threshold. These actions include sending emails, trig-
gering a webhook to make an API call to another service, and creating
tickets in popular IT Service Management (ITSM) tools like ServiceNow,
System Center Service Manager, Provance, and Cherwell.

To create an alert, an OMS user can create a query in Log Search that
matches the desired conditions for the alert. Alternatively, they can click
any graph in the dashboard and then click the Alert button in the top
menu. This will open an alert rule creation window that allows the user
to specify the exact conditions of the alert and the actions that should be
taken, as shown in Figure 8-7.

Figure 8-7: Alert creation in OMS

The user creating the rule can specify how critical they deem the alert.
They can also set a cool-off period to prevent the rule from triggering con-
tinually. Between the custom dashboards, queries, and alerting options,
OMS users can stay apprised of events and trends in their environments.

Secure DevOps Kit
The Secure DevOps Kit is a group of scripts designed to help devel opers
turn on key security controls in an efficient, consistent way. These scripts
were created within Microsoft’s IT organization as a result of consider-
able research and testing by its cloud security team. The kit is written

174 Chapter 8

in PowerShell and requires the workstation where it is run to have the
Azure PowerShell tools already installed. To get the toolkit, open a
PowerShell prompt and run the following:

PS C:\> Install-Module AzSK -Scope CurrentUser

Once the toolkit has finished downloading, run the cmdlet Get
-AzSKSubscriptionSecurityStatus, specifying a subscription ID. This will
examine a number of attributes in the specified subscription, such as the
number of subscription administrators, unresolved ASC alerts, use of classic
resources, and whether designated security contacts for the subscription
have been provided. Listing 8-1 shows Get-AzSKSubscriptionSecurityStatus
running on a subscription.

PS C:\> Get-AzSKSubscriptionSecurityStatus -SubscriptionId ID
==
Method Name: Get-AzSKSubscriptionSecurityStatus
Input Parameters:
Key Value
--- -----
SubscriptionId ID
==
Running AzSK cmdlet using a generic (org-neutral) policy...
==
Starting analysis: [FeatureName: SubscriptionCore] [SubscriptionName: Sub] [SubscriptionId: ID]
--
Checking: [SubscriptionCore]-[Minimize the number of admins/owners]
Checking: [SubscriptionCore]-[Justify all identities that are granted with admin/owner access]
Checking: [SubscriptionCore]-[Mandatory central accounts must be present on the subscription]
Checking: [SubscriptionCore]-[Deprecated/stale accounts must not be present]
Checking: [SubscriptionCore]-[Do not grant permissions to external accounts]
Checking: [SubscriptionCore]-[There should not be more than 2 classic administrators]
Checking: [SubscriptionCore]-[Use of management certificates is not permitted]
Checking: [SubscriptionCore]-[Azure Security Center (ASC) must be correctly configured]
Checking: [SubscriptionCore]-[Pending Azure Security Center (ASC) alerts must be resolved]
Checking: [SubscriptionCore]-[Service Principal Names should not be Owners or Contributors]
Checking: [SubscriptionCore]-[Critical resources should be protected using a resource lock]
Checking: [SubscriptionCore]-[ARM policies should be used to audit or deny certain activities]
Checking: [SubscriptionCore]-[Alerts must be configured for critical actions]
Checking: [SubscriptionCore]-[Do not use custom-defined RBAC roles]
Checking: [SubscriptionCore]-[Do not use any classics resources on a subscription]
Checking: [SubscriptionCore]-[Do not use any classic virtual machines on your subscription.]
Checking: [SubscriptionCore]-[Verify the list of public IP addresses on your subscription]
--
Completed analysis:[FeatureName: SubscriptionCore] [SubscriptionName: Sub] [SubscriptionId: ID]
==
Summary Total Critical High Medium
------- ----- -------- ---- ------
Passed 7 1 3 3
Failed 8 0 5 3
Verify 2 0 1 1
Manual 1 0 1 0
Total 18 1 10 7

Monitoring, Logs, and Alerts 175

==
Status and detailed logs have been exported to path - AppData\Local\Microsoft\AzSKLogs\
==

Listing 8-1: Secure DevOps Kit examining the security settings of a subscription

This will list the tests being run and the number of tests that pass, fail,
or need manual verification, as well as provide a path to the output log.
Results are logged to a CSV file, which contains the pass/fail status of each
control as well as recommended steps that can be taken to become compli-
ant. For example, if critical alert notifications aren’t enabled, the results will
suggest running Set-AzSKAlerts to enable them.

Next, run the Get-AzSKAzureServicesSecurityStatus cmdlet. This com-
mand works just like the Get-AzSKAzureSubscriptionSecurityStatus cmdlet,
except instead of validating the security of the subscription’s configuration,
it checks the security of each service running inside the subscription. The
results are written to the screen and to a CSV file just as they are for the
subscription security check.

Although these one-time checks of Azure settings are a good start,
there is a good chance the subscription and its services may become less
secure over time. This could happen if an administrator accidently disables
a security setting, if new resources are deployed and aren’t set up for moni-
toring, or if a new security feature is added to Azure but isn’t retroactively
applied to existing resources. To handle these cases, the Secure DevOps Kit
also offers a Continuous Assurance component.

Continuous Assurance uses Azure Automation to create a runbook
that validates the security of any specified resource groups once a day. The
results are stored in an OMS workspace so administrators can track their
resources’ security posture over time. To enable Continuous Assurance,
run the following:

PS C:\> Install-AzSKContinuousAssurance -SubscriptionId ID -OMSWorkspaceId Workspace `
 -OMSSharedKey Key -ResourceGroupNames "Group1,Group2"

Be sure to specify an existing OMS workspace and its associated access
key, as well as any resource groups that should be monitored. Once the
command completes, the automation job will take several hours before
results are available in OMS.

Other features available in the Secure DevOps Kit may also be helpful,
depending on your client’s environment. For more information, see https://
github.com/azsk/DevOpsKit-docs/.

Custom Log Handling
Both OMS and Security Center are good choices for clients looking for
first-party Microsoft solutions to managing and monitoring their services,
but these solutions might not be a perfect fit for every customer. Some
enterprises may want to integrate logs into other monitoring tools they
use already; that way, they’ll have everything in a single place. Or maybe

https://github.com/azsdk/azsdk-docs/

176 Chapter 8

they’re using a service in a novel way or have threat concerns unique to
their business—the kind of events not accounted for in any commercial
product—that need to be addressed in a custom solution. Some customers
might want to monitor newly released Azure services that don’t yet have
corresponding solutions in OMS. And others may have unique regulatory
requirements that dictate a long period of log data retention. For these
clients, Azure does provide the ability to save logs for just about every ser-
vice, usually to a storage account.

Service logs are usually off by default. Users must enable them on a per-
resource basis in the Azure portal. This is to save customer expense, because
logs are written to storage accounts, which are billed by the amount of space
used. The location of this setting differs by service; for services with OMS
log forwarding, the option should be on the same Diagnostics Log page. For
other services, it’s sometimes labeled Diagnostics, Alerts, Metrics, Logging, or
Activity Log.

On most of these settings blades, there is a checkbox to save the logs
to a storage account that, once checked, will display a drop-down menu
for selecting the desired storage account—very much like configuring Log
Analytics for OMS. For some services, like virtual machines, you first need
to view the log in the service’s Activity Log page, click Export, and then
choose the destination storage account, as shown in Figure 8-8.

Figure 8-8: Exporting VM logs to Azure Storage

After the logs for various services are being saved to a storage account,
users can retrieve them with PowerShell, a storage account library, or any
of the numerous storage account client applications discussed in Chapter 4.
Many services write the logs as flat files into blob storage, though some use
table storage to save their records. Unfortunately, there isn’t a consistent
format used by all services, so a developer will need to parse the logs for any
services of interest and create a custom solution based on the organization’s
needs.

Monitoring, Logs, and Alerts 177

Penetration testers should occasionally review the logs before and
after carrying out an operation or using a new tool to better understand
how much activity is currently being recorded and detected. If you find
events that end up in logs but aren’t exposed in Azure Security Center or
OMS, make your client aware of this gap and notify Microsoft. You can do
so at https://feedback.azure.com/ or through the product support link in the
Azure Portal. If your client is a Premier customer, they can submit feedback
through their technical account manager.

Summary
In this chapter, we reviewed the various ways clients can configure alerts
for security events in Azure, as well as audit their resources to ensure they
are following best practices. We started with Azure Security Center, which
is a good option for those who want to focus specifically on securing Azure,
because it offers both alerts and configuration recommendations for a vari-
ety of Azure services. For users wanting to manage multiple environments,
we explored Operations Management Suite, which can also alert on secu-
rity events, but unlike Security Center, it can perform health checks, moni-
tor on-premises servers, and even automate management duties on servers.
Next, you saw how the Secure DevOps Kit could verify whether crucial
security settings are properly configured for an Azure subscription. Finally,
we examined how to retrieve logs from Azure that developers can review by
hand or use in custom management tools.

Thank you for joining me on this walk through a cloud. May your
engagements be legal, enjoyable, appreciated, and ever increasing in
difficulty.

G l o s s a r y

You will encounter the following terms
frequently when discussing cloud services.

Because these terms can be confusing and
sometimes have different meanings to differ-

ent people, I define them in the contexts you find in
this book.

Append Blob A type of Azure Storage blob designed for holding
data that is frequently appended to but not changed once written (for
example, log files). These blobs can contain up to 195GB of data.

Application Programming Interface (API) A set of functions a soft-
ware developer can use to interact with another product or system.
Microsoft offers a number of APIs to allow other companies to enhance
or simplify Azure for end customers.

Azure Microsoft’s cloud ecosystem. In this book, I use Azure when
referring specifically to Microsoft’s cloud ecosystem, not to cloud
services in general.

180 Glossary

Azure Account One user’s logon to access Azure services. An Azure
account can have access to one or more subscriptions.

Azure Automation An Azure service for automating common cloud,
on-premises, and hybrid management tasks.

Azure Portal The website used to configure and monitor Azure
resources.

Azure Resource Manager (ARM) The newer management model used
to configure and deploy resources in Azure. ARM is a replacement for
Azure Service Management (ASM).

Azure Security Center (ASC) A service within Azure to display secu-
rity alerts and recommendations.

Azure Service Management (ASM) The original website, set of APIs,
and tools used to manage Azure resources. It has been superseded by
Azure Resource Manager (ARM).

Azure Subscription A customer’s collection of services used in Azure.
Some customers place all of their services in one subscription, whereas
others may break them up by project or separate development and test
environments from production. Subscriptions are identified primarily
by a globally unique identifier (GUID), which might look like this:
59c7ae33-9be9-4b05-8cf3-6671d8b581db. Subscriptions can also have
a friendly name, such as “Production Parking Registration System.”

Black Box Testing A method for penetration testing where the tester
has no previous or insider knowledge about the target.

Black Hat A hacker who is not well meaning. Examples include
attackers trying to steal financial data or trade secrets, or attempting
to sabotage a competitor.

Blade A page within the Azure portal that provides information or
configuration options for a resource.

Blob Storage One type of data storage offered within Azure Storage
accounts, in which users can store large collections of unstructured or
semi-structured data.

Block Blob The default type of blob storage. Each block can hold up
to 100MB, and a single blob can hold 50,000 blocks. Blocks can grow
dynamically.

Blue Team The group responsible for security monitoring. The
blue team tries to detect and defend against both red teams and real
attackers. The terms red team and blue team come from the military and
are used in military exercises.

Certificate Thumbprint A unique identifier for a certificate in base64
format.

Cloud A collection of services hosted on a shared infrastructure that
allows customers to use only as many computing resources as they need.
Examples include Azure, Amazon Web Services (AWS), and Google
Cloud Platform.

Glossary 181

Cloud Provider A company that provides cloud services to custom-
ers. The major players in this market are Amazon, Google, Microsoft,
Rackspace, and Salesforce.

Credential Guard A feature in recent versions of Windows that pro-
tects critical parts of memory from access; for example, Credential
Guard prevents tools such as Mimikatz from accessing passwords.

Fabric The underlying software and hardware that run a cloud. The
fabric isn’t directly exposed to customers, but it runs the services and
infrastructure they deploy.

Globally Unique Identifier (GUID) A randomly generated 128-bit
number used to uniquely identify an object. GUIDs aren’t guaranteed
to be globally unique but rely on the improbability of a collision given
the size of the number space. Azure uses GUIDs for things like sub-
scription identifiers. GUIDs are typically written in 32 hex-character
format, for example: ed82ee4b-ed9f-479e-93c9-df87e3e0145e.

Gray Box Texting A method of penetration testing where the tester
has a limited amount of previous or insider knowledge about the target.

Gray Hat A hacker with ambiguous or not fully lawful intent and
methods. For example, a gray hat might operate without permission,
but would likely disclose findings to their target rather than trying to
sell them to a competitor.

Hacker While the definition for this term varies depending on who
you ask, I use it to describe anyone who is attempting to circumvent
security measures and gain access to computer resources to which they
wouldn’t normally have access. This could be a hired penetration tester
or an illicit actor.

Infrastructure as a Service (IaaS) This is the more traditional host-
ing model originally used by colocation facilities and data centers. With
IaaS, the cloud provider runs a virtualization system, such as Hyper-V
or VMware, and allows its customers to run complete virtual servers
within them. This provides the customers with the greatest flexibility
in terms of operating systems, services, and applications that run in the
cloud. However, the additional overhead of the virtual machine’s oper-
ating system tends to increase cost compared to Platform as a Service
(PaaS) solutions.

Key Vault An Azure service that can be used to securely store pass-
words, certificates, keys, connection strings, and other secrets. They can
be retrieved manually or programmatically through API calls.

Logic Apps A workflow service in Azure that allows users to trigger
actions in multiple Azure and non-Azure services based on a variety of
data sources and events.

Management Certificate An asymmetric cryptography certificate that
users can upload to the Azure portal and use to authenticate permis-
sions to manage Azure Service Management (ASM) resources.

182 Glossary

Microsoft Account (MSA) An email address used to log in to most
Microsoft services, including Azure (previously known as a Passport or
Live ID).

Mimikatz A security tool designed to retrieve passwords and certifi-
cates from memory on Windows machines.

Network Security Groups (NSGs) A collection of rules that can be
applied to limit access to an Azure VM; network security groups are
similar to firewalls.

Operations Management Suite (OMS) An online management sys-
tem from Microsoft that can monitor cloud and on-premises services,
automate management tasks, and perform log aggregation.

Page Blob An Azure Storage blob type used to hold large, random
read-write optimized data such as virtual hard disks.

Penetration Testing (Pentesting) A security assessment during which
one or more white hat hackers will try to validate the security of an
organization by trying to break in to it. In penetration testing, the goal
isn’t to find every possible flaw; it is to determine if a black hat could
successfully compromise a target, and if so, to demonstrate one or more
methods they might use.

Platform as a Service (PaaS) A cloud service that provides developers
with a set of tools and APIs they can use to develop applications written
exclusively for the cloud. PaaS typically gives developers the greatest
flexibility in terms of ability to quickly scale an application from a small
group of users to millions of users. It also generally uses fewer resources
(and therefore costs less) than a comparable Infrastructure as a Service
(IaaS) solution. The biggest drawback to PaaS is vendor lock-in and
dependence, because the application can only run in the cloud for
which it was designed.

Privileged Access Workstation (PAW) A hardened system intended to
be used strictly for sensitive administrative duties. By performing these
tasks on a different system than normal business work, such as checking
email or browsing the internet, the risk of administrative credentials
being compromised through phishing or software exploits is greatly
reduced.

Queue A type of data storage offered within Azure Storage accounts
that can be used to process data in a sequence, such as orders arriving
from customers.

Red Team A group of white hat hackers who try to emulate real-world
cybercriminals in order to test a company’s preparedness.

Resource A specific instance of a service in Azure.

Salted Hash A method for concatenating a random value with a
user’s password before calculating and storing the password’s hash.
This helps decrease the success of rainbow table attacks against the
hash database, as it increases the size of the table needed to contain

Glossary 183

the hash. Additionally, it prevents the disclosure of the fact that two
accounts use the same password, as each would have a different salt
value.

Server Message Block (SMB) The file-transfer mechanism used for
Windows network file shares.

Service One type of application offered within Azure, such as Azure
Web Sites or an Azure Storage blob.

Service Bus A message relay service that can queue requests and
move them between Azure and on-premises servers.

Service Principal An account used to run services within Azure.

Shared Access Signature (SAS) Token A URL containing a key that
grants access to a specific resource. The token may contain limitations,
such as a validity period or acceptable source IP range.

Software as a Service (SaaS) An application hosted and managed in
the cloud. Instead of buying a license for a boxed program, customers
pay a subscription fee for access to use the software. Prominent examples
of SaaS include Salesforce, a customer relationship management system,
and Adobe’s Creative Cloud, offering photography, illustration, and
video editing tools.

Table Storage A type of data storage offered within Azure Storage
accounts that you can use to store structured tabular data.

White Box Testing A method for penetration testing where the tester
has complete access to insider knowledge about the target, such as source
code, design documents, and plans.

White Hat A hacker who doesn’t have malicious intent. Typically, this
is someone hired by the target company to help improve security, but it
could also be an external security researcher who obeys the company’s
responsible disclosure guidelines.

A
AAD (Azure Active Directory), 11
Account Administrator, 10
account lockouts, 21
Add-AzureRmAccount, 44–46, 153
AddressSpaceText, 129
Adobe Creative Cloud, 136
advanced access policy, in Key Vault,

145–146
app.config files, 25, 73
append blobs, 83, 179
application programming interface

(API), 179
App Services, 50–51
ARM (Azure Resource Manager). See

Azure Resource Manager
(ARM)

ASM (Azure Service Management),
10–13, 14, 180

ASM2ARM, 14
auditing, 46
authenticator application, 33
automation assets, 152–156
automation certificates, retrieving,

153–154
Autopsy, 95, 96
AzSK, 173–175
Azure, 179
Azure account, 180
Azure Active Directory (AAD), 11
Azure Application Gateway, 121
Azure App Services, 50–51, 146
Azure Automation, 151, 152–161, 180

assets, 151, 152
canvas, 155
certificates, 153
Hybrid Workers, 152, 157–161
runbooks, 152, 154, 155
subscription connection data, 153
Test pane, 157
variables, obtaining, 153

Azure Classic. See Azure Service
Management (ASM)

AzureClassicRunAsCertificate, 153
Azure deployment models, 10–14

Azure Disk Encryption, 97, 111, 145,
146, 167

Azure Explorer, 76–77
Azure Files, 81, 88–90
Azure Key Vault, 85. See Key Vault
Azure portal, 13, 180
Azure PowerShell, 36–40
Azure Relay, 133
Azure Resource Manager (ARM), 13, 180

migration, 14
profile tokens, 20

Azure roles
Account Administrator, 10
Co-Administrator, 10
contributor, 14
displaying assignments, 48
Owner, 14
Reader, 14
Service Administrator, 10
showing definitions, 48
User Access Administrator, 14

AzureRunAsCertificate, 153
Azure Security Center, 164–168, 180

detection, 164–166
prevention, 164, 167–168
Prevention Policy, 168
Security Policy, 168

Azure Service Bus. See Service Bus
Azure Service Management (ASM),

10–13, 14, 180
Azure SQL, 167

databases, listing, 62
firewalls, 61, 62, 63, 119–120
servers, listing, 61
SQL Server Management Studio,

61, 120
threat detection, 62, 164

Azure Storage
access policy, 85
accounts, 54–56
blobs, 81, 83–85
containers, 83
credentials, 54–56
files, 81, 88–90
keys, 54–56, 93

I n d e x

186 Index

Azure Storage, continued
queues, 81, 86–88
shares, 88–90
tables, 81, 85–86

Azure Storage Explorer, 74, 84, 89, 93, 94
Azure Storage Explorer 6, 79, 80
Azure subscription, 180
Azure Virtual Network, 123
AzureXplorer, 77

B
billing data, 94
BitLocker, 97
black box testing, 4, 180
black hats, xxii, 3, 180
blades, 124, 180
blob storage, 54, 180
block blobs, 83, 180
blue team, 180
brokered messaging, 133
browser pivoting, 29
brute-force attacks, for cracking

passwords, 101
bug bounties, 6

C
Cain & Abel, 15, 98, 103, 104–106
Certificate Revocation Lists (CRLs), 13
certificates, retrieving from Key Vault,

143–145
certificate validation, disabling, 109
Cherwell, 173
client secret, 43
cloud, 180

environments, listing, 48
general security, 2–3
provider, 181
sync, 147

Cloud Provider, 181
Cloud Service Package, 25
cloud sync, 147
CloudXplorer, 77–78, 93
ClumsyLeaf Software, 77, 85, 93
.cms configuration files, 126
cmstp.exe, 126
Co-Administrator, 10
Cobalt Strike, 29
Command Line Interface (CLI), 36
.config files, 19, 24, 25, 73, 150, 151
config mode, 38
connecting to Azure with PowerShell,

40–43, 44, 153

connection strings, finding
in Azure Key Vault, 141
in Azure Storage Explorer, 80
in ClumsyLeaf software, 77–79
in configuration files, 24–25
in Microsoft Azure Storage Explorer,

74–76
in Redgate’s Azure Explorer, 76–77
in Service Bus Explorer, 136
in Web App Publish Settings files, 149

constrained language mode, 39
containers, 83
context, for a storage account, 82
cookies, 28
credential assets, 158
Credential Guard, 17, 18, 181
credentials, obtaining

by guessing passwords, 21
with Mimikatz, 15–18
by phishing, 19–20
from profile tokens, 20
from unencrypted documents, 19

credentials, resetting, 55
CRLs (Certificate Revocation Lists), 13
.cspkg files, 25

D
Dashlane, 100
Delpy, Benjamin, 15
denial-of-service (DoS), 118
deployment credentials, 148–150
deployment models, 10–14
dictionary attacks, for cracking

passwords, 101
Digital Identity Guidelines, 18
DM-Crypt, 97
Donne, John, 3

E
endpoints, 58
Enter-PSSession, 109
entropy, 11, 34
exporting logs, 176
ExpressRoute, 56, 123, 130–132

checking connection status, 132
obtaining details, 131

F
fabric, 181
File Transfer Protocol (FTP), 147

Index 187

firewalls
endpoint rules, 118
SQL, 61, 63, 119–120
VMs, 117–119
Web Application Firewall (WAF),

121–122
freeRDP, 109

G
Get-AutomationCertificate, 154
Get-AutomationConnection, 153
Get-AutomationPSCredential, 153, 156, 158
Get-AutomationVariable, 153
Get-AzSKAzureServicesSecurityStatus, 175
Get-AzSKSubscriptionSecurityStatus, 174
Get-AzureBGPPeering, 132
Get-AzureEndpoint, 58, 109
Get-AzureEnvironment, 48
Get-AzureKeyVaultCertificate, 143, 145
Get-AzureKeyVaultKey, 142
Get-AzureKeyVaultSecret, 141, 144, 145
Get-AzureNetworkSecurityGroup, 59
Get-AzureReservedIP, 58
Get-AzureRmContext, 48
Get-AzureRmExpressRouteCircuit, 131, 132
Get-AzureRmKeyVault, 141, 142
Get-AzureRmLocalNetworkGateway, 128
Get-AzureRmNetworkInterface, 58
Get-AzureRmNetworkSecurityGroup, 60, 109
Get-AzureRmNetworkSecurityRuleConfig, 60
Get-AzureRmPublicIpAddress, 58
Get-AzureRmResource, 50
Get-AzureRmResourceGroup, 49
Get-AzureRmRoleAssignment, 48
Get-AzureRmRoleDefinition, 48
Get-AzureRmServiceBusNamespace, 133
Get-AzureRmServiceBusNamespace

AuthorizationRule, 134
Get-AzureRmServiceBusNamespaceKey, 134
Get-AzureRmSqlDatabase, 62
Get-AzureRmSqlServer, 62
Get-AzureRmSqlServerFirewallRule, 62
Get-AzureRmSqlServerThreatDetectionPolicy, 62
Get-AzureRmStorageAccount, 54
Get-AzureRmStorageAccountKey, 55, 93
Get-AzureRmVirtualNetworkGateway, 130
Get-AzureRmVirtualNetworkGatewayConnection,

128
Get-AzureRmVM, 52–53
Get-AzureRmWebApp, 50
Get-AzureSqlDatabase, 61
Get-AzureSqlDatabaseServer, 61

Get-AzureSqlDatabaseServerFirewallRule,
61, 120

Get-AzureStorageAccount, 54
Get-AzureStorageBlob, 83
Get-AzureStorageContainer, 83
Get-AzureStorageFile, 89
Get-AzureStorageKey, 55
Get-AzureStorageQueue, 87
Get-AzureStorageQueueStoredAccessPolicy, 87
Get-AzureStorageShare, 89
Get-AzureStorageTable, 85
Get-AzureStorageTableStoredAccessPolicy, 85
Get-AzureSubscription, 47
Get-AzureVM, 52, 57, 107
Get-AzureWebsite, 50
GetMessage, 88
GetNetworkCredential, 153, 156
Get Out of Jail Free card, 6–7
globally unique identifier (GUID), 180
gray box testing, 181

H
hacker, 181
Hardware Security Module (HSM), 145
hashcat, 103, 106, 111
Holmes, Lee, 39
hostname, determining, 107
.htaccess, 100
.htpasswd, 100
hybrid approach, to pentesting, 2–3
hybrid attacks, for cracking passwords, 101
Hybrid IT, 116
Hybrid Workers, 152, 157–161
Hydra, 22

I
Import-Module, 37, 132
Infrastructure as a Service (IaaS), 51, 181
ingestion, 96
Install-AzSKContinuousAssurance, 175
IP addresses, finding a VM’s, 57–59
IT Service Management (ITSM), 173

J
JavaScript Object Notation (JSON), 20
jump server, 119
just enough admin (JEA), 26
just-in-time (JIT) administration, 26

188 Index

K
KeePass, 100
Key Vault, 139, 140–146, 181

advanced access policy, 145–146
certificates, 143–145
keys, 142–143
KeyVaultClient, 143
secrets, 141
tags, 142

L
laws, 7
least privilege, 14, 43
Live ID, 11, 182
LM hash, 102, 103, 106
Local Security Authority Subsystem

Service (LSASS), 15
Log Analytics, 170, 176
log handling, 175–177
Logic Apps, 123, 136–137, 181
logons, rate limiting, 21
Log Search, 171, 172
LSASS (Local Security Authority

Subsystem Service), 15

M
management certificates, 11–14, 40, 181

authenticating, 41–43
finding, 23–25
installing, 41
reused, 24

Mantri, Gaurav, 43
MFA (multi-factor authentication). See

multi-factor authentication
Microsoft Account (MSA), 11, 182
Microsoft Azure Storage Explorer, 74–76,

84, 89, 93–94
MigAz, 14
Mimikatz, 15–18, 24, 31, 94, 126, 182
MiTeC, 107
ModSecure Core Rules, 121
MonitoringHost.exe, 158
Mount-DiskImage, 97
mounting VHDs, 95
MSA (Microsoft Account), 11, 182
msbuild.exe, 147
MSDeploy, 147
multi-factor authentication (MFA), 9, 15,

26–33, 71–72

N
National Institute of Standards and

Technology (NIST), 18
Nessus, 4
net use, 88, 90
network gateway, displaying, 127–129
network interfaces, 56
Network Security Groups (NSGs), 59–61,

116, 118, 182
listing, 59, 109
rules, 60

New-AzureKeyVaultCertificatePolicy, 145
New-AzureRmVirtualNetworkGateway

Connection, 130
New-OnPremiseHybridWorker, 158
New-PSSessionOption, 109
Next-Generation Firewalls, 118
NIST (National Institute of Standards

and Technology), 18
Nmap, 58, 110–111
nonrepudiation, 13
notification, of testing, 4–5
NSGs (Network Security Groups), 59–61,

116, 118, 182
NTLM hash, 102

O
Oechslin, Philippe, 102
Open Web Application Security Project

(OWASP), 4, 121
Operations Management Suite (OMS),

158, 168, 182
agent, 171
alerts, 173
gallery, 169, 170
solutions, 169
workspace, 169

Orchestrator.Sandbox.exe, 158
OWASP (Open Web Application Security

Project), 4, 121

P
PaaS (Platform as a Service), 6, 50,

146, 182
page blobs, 83, 182
Passport, 11, 182
password manager, 18
passwords

cracking
brute-force attack, 22, 101
dictionary attack, 101

Index 189

hybrid attack, 101
rainbow table attack, 102

guessing, 21
hashes, weaknesses in, 102–103
resetting, 111–112
retrieving, from automation assets,

153–156
spraying, 22
tools for attacking, 103–106

Password Safe, 100
password spraying, 22
PAW (Privileged Access Workstation),

26, 182
PeekMessage, 88
penetration testing, xxii, 182
permission, for pentesting, 3, 4, 6
.pfx files, 23
phishing, 11, 19, 33
phone authentication, 27, 31–33
PIM (Privileged Identity Management),

26, 46–47
Platform as a Service (PaaS), 182
portal, 13, 180
ports, querying open, 58–59, 109
port scanning, 110
PowerShell

connecting to Azure with, 40–45
installing, 36–37
constrained language mode, 39
remoting, 39, 109
running, 37

PowerSploit, 16
pretexting, 33
pricing tiers, for VMs, 52, 92, 118
private peering, 131
Privileged Access Workstation (PAW),

26, 182
privileged accounts, 26
Privileged Identity Management (PIM),

26, 47
profile tokens, 20
Provance, 173
proxying browser traffic, 29
PSCredential, 153
public peering

Azure, 131
Microsoft, 132

publish profile, 149
Publish Settings, 23–24
.publishsettings files, 23, 42
pubxml.user file, 149
PuTTY, 109
PwDump, 15

Q
Qualys, 4
queues, 54, 86–88, 182

R
rainbow table attacks, for cracking

passwords, 102
RBAC (role-based access control), 13–14
RDP (Remote Desktop Protocol), 109, 118
Redgate Software, 76
red team, 182
registry hives, 98, 107–108
remote administration, 108–111
remote code execution, 87
Remote Desktop Protocol (RDP),

109, 118
resetting VM passwords, 111
resource groups, listing, 49, 51
resources, 50, 182
role-based access control (RBAC), 13, 14
roles. See Azure roles
rolling credentials, 55, 70
RSA keys, 142
runbooks, 152–160

S
SaaS (Software as a Service), 183
salted hash formats, 102, 182
SAM (Security Account Manager) file,

15, 98, 103
SAS (Shared Access Signature) tokens,

71, 72, 183
scope creep, 6
scoping, 3
script execution, allowing, 64
secrets

retrieving from Key Vault, 141–145
retrieving from VHDs, 94–95

Secure DevOps Kit, 47, 173–175
alerts, 175
checking service security, 175
checking subscription security, 174
Continuous Assurance, 175

Secure Shell (SSH), 108–109, 119
Security Account Manager (SAM) file,

15, 98, 103
Security Center. See Azure Security

Center
self-signed certificates, 23
Server Message Block (SMB), 54, 183
service, 183
service account, 28

190 Index

Service Administrator, 11
Service Bus, 123, 133–136, 183

authorization rule, 134
brokered message, 135
keys, 134
messages, 134
namespaces, 133

Service Bus Explorer, 135
ServiceKey, 131
service models, 38
ServiceNow, 173
service principals, 14, 22, 43, 44–46, 183
Set-AzSKAlerts, 175
Set-ExecutionPolicy, 64
shadow files, 100
Shared Access Signature (SAS) tokens,

71, 72, 183
SharedKey, 129
Shodan, 57
SIM cards, 31–32
Skoudis, Ed, 7
Slack, 136
smartcards, 27, 28, 30, 31
SMB (Server Message Block), 54, 183
snapshots of VHDs, downloading, 93–94
social engineering, 32
Software as a Service (SaaS), 183
spear phishing, 19
SQL. See Azure SQL
SSH (Secure Shell), 108–109, 119
SSL certificate validation, 109
storage keys, 71
subscription connection data, retrieving

from Azure Automation,
153–154

subscription details, displaying, 47–48
Syskey, 98
System Center Service Manager, 173

T
table storage, 54, 183
TableXplorer, 77, 79, 85
tactics, techniques, and procedures

(TTPs), xxii
telnet, 109
Tenable, 4
Test-NetConnection, 110
thumbprint, 42, 180
TightVNC, 109
TTPs (tactics, techniques, and

procedures), xxii
two-factor authentication (2FA), 9, 15,

26–33, 71–72

U
User Access Administrator, 14

V
variables in Azure Automation,

obtaining, 152
virtual hard disks (VHDs), 91

Autopsy, exploring with, 95–100
Linux VHDs, 100
Windows VHDs, 98–99

mounting, 95, 97
secrets, retrieving from, 94–95
snapshots, downloading, 93–94

virtual machines (VMs), 51–54
listing, 51–54, 57–58, 107
resetting passwords, 111–113

VNC, 109
VPN (virtual private network), 123–130

creating, 125–126
displaying connections, 128
gateway, 128–129
multisite, 123, 129
point-to-site, 123, 124
site-to-site, 123, 127–129
VNet-to-VNet, 123, 129

W
WAWSDeploy.exe, 147
Web Application Firewall (WAF), 121–122
Web Apps, 50, 146–151
web.config, 25, 73
WebDeploy, 147
Web Platform Installer (WebPI), 36
white box testing, 183
white hats, xxii, 183
Windows Registry Recovery, 107
Windows Remote Management

(WinRM), 109, 119
WS-Management, 39

X
X.509 certificates, 10, 11, 13, 23,

45–46, 153

Z
Zendesk, 136

RESOURCES
Visit https://nostarch.com/azure/ for resources, errata, and more information.

AttACking nEtwORk
PROtOCOlS
A Hacker’s guide to Capture, Analysis,
and Exploitation
by james forshaw

december 2017, 336 pp., $49.95
isbn 978-1-59327-750-5

PoC||gtFO
by manul laphroaig

august 2017, 768 pp., $40.00
isbn 978-1-59327-880-9
full-color insert, leatherette cover,
ribbon, gilt edges

MAlwARE DAtA SCiEnCE
Attack Detection and Attribution
by joshua saxe with
hillary sanders

fall 2018, 400 pp., $49.95
isbn 978-1-59327-859-5

tHE HARDwARE HACkER
Adventures in Making and
Breaking Hardware
by andrew “bunnie” huang

march 2017, 416 pp., $29.95
isbn 978-1-59327-758-1
hardcover

SERiOUS CRyPtOgRAPHy
A Practical introduction to Modern
Encryption
by jean-philippe aumasson

november 2017, 312 pp., $49.95
isbn 978-1-59327-826-7

gRAy HAt C#
A Hacker’s guide to Creating and
Automating Security tools
by brandon perry

june 2017, 304 pp., $39.95
isbn 978-1-59327-759-8

More no-nonsense books from nO StARCH PRESS

1.800.420.7240 or 1.415.863.9900 | sales@nostarch.com | www.nostarch.com

Pentesting Azure Applications is a comprehen-
sive guide to penetration testing cloud services
deployed in Microsoft Azure, the popular cloud
computing service provider used by numerous
companies. You’ll start by learning how to
 approach a cloud-focused penetration test and
how to obtain the proper permissions to exe-
cute it; then, you’ll learn to perform reconnais-
sance on an Azure subscription, gain access to
Azure Storage accounts, and dig into Azure’s
Infrastructure as a Service (IaaS).

You’ll also learn how to:

 Uncover weaknesses in virtual machine
settings that enable you to acquire pass-
words, binaries, code, and settings files

 Use PowerShell commands to find
IP addresses, administrative users,
and resource details

 Find security issues related to multi-
factor authentication and management
 certificates

 Penetrate networks by enumerating
 firewall rules

 Investigate specialized services like Azure
Key Vault, Azure Web Apps, and Azure
Automation

 View logs and security events to find out
when you’ve been caught

Packed with sample pentesting scripts, practi-
cal advice for completing security assessments,
and tips that explain how companies can con-
figure Azure to foil common attacks, Pentesting
Azure Applications is a clear overview of how
to effectively perform cloud-focused security
tests and provide accurate findings and recom-
mendations.

About the Author
Matt Burrough is a senior penetration tester
on a corporate red team, where he assesses the
security of cloud computing services and inter-
nal systems. He holds a bachelor’s degree in
networking, security, and system administra-
tion from Rochester Institute of Technology and
a master’s degree in computer science from the
University of Illinois at Urbana-Champaign.

“Gives you a leg up on pentesting
and defending Microsoft Azure.”

 — Thomas W. Shinder, MD

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Burrough

Pentesting Azure Applications

Pentesting Azure
Applications

The Definitive Guide to
Testing and Securing Deployments

The Definitive Guide to Testing and Securing Deployments

Price: $39.95 ($53.95 CDN)

Shelve In: ComPuterS/SeCurIty

Matt Burrough
Foreword by Thomas W. Shinder, MD

	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	About Penetration Testing
	What This Book Is About
	How This Book Is Organized
	What You’ll Need to Run the Tools

	Chapter 1: Preparation
	A Hybrid Approach
	Teams Don’t Always Have Cloud Experience
	Clouds Are Reasonably Secure by Default
	It’s All Connected

	Getting Permission
	Scope the Assessment
	Notify Microsoft
	Obtain a “Get Out of Jail Free” Card
	Be Aware of and Respect Local Laws

	Summary

	Chapter 2: Access Methods
	Azure Deployment Models
	Azure Service Management
	Azure Resource Manager

	Obtaining Credentials
	Mimikatz
	Using Mimikatz
	Capturing Credentials
	Factors Affecting Success

	Best Practices: Usernames and Passwords
	Usernames and Passwords
	Searching Unencrypted Documents
	Phishing
	Looking for Saved ARM Profile Tokens
	Guessing Passwords

	Best Practices: Management Certificates
	Finding Management Certificates
	Publish Settings Files
	Reused Certificates
	Configuration Files
	Cloud Service Packages

	Best Practices: Protecting Privileged Accounts
	Encountering Two-Factor Authentication
	Using Certificate Authentication
	Using a Service Principal or a Service Account
	Accessing Cookies
	Proxying Traffic Through the User’s Browser
	Utilizing Smartcards
	Stealing a Phone or Phone Number
	Prompting the User for 2FA

	Summary

	Chapter 3: Reconnaissance
	Installing PowerShell and the Azure PowerShell Module
	On Windows
	On Linux or macOS
	Running Your Tools

	Service Models
	Best Practices: PowerShell Security
	Authenticating with the PowerShell Module and CLI
	Authenticating with Management Certificates
	Installing the Certificate
	Authenticating
	Connecting and Validating Access

	Best Practices: Service Principals
	Authenticating with Service Principals
	Using Service Principals with Passwords
	Authenticating with X.509 Certificates

	Best Practices: Subscription Security
	Gathering Subscription Information
	Viewing Resource Groups
	Viewing a Subscription’s App Services (Web Apps)
	Gathering Information on Virtual Machines
	Finding Storage Accounts and Storage Account Keys

	Gathering Information on Networking
	Network Interfaces
	Obtaining Firewall Rules or Network Security Groups
	Viewing Azure SQL Databases and Servers

	Consolidated PowerShell Scripts
	ASM Script
	ARM Script

	Summary

	Chapter 4: Examining Storage
	Best Practices: Storage Security
	Accessing Storage Accounts
	Storage Account Keys
	User Credentials
	SAS Tokens

	Where to Find Storage Credentials
	Finding Keys in Source Code
	Obtaining Keys from a Developer’s Storage Utilities

	Accessing Storage Types
	Identifying the Storage Mechanisms in Use
	Accessing Blobs
	Accessing Tables
	Accessing Queues
	Accessing Files

	Summary

	Chapter 5: Targeting Virtual Machines
	Best Practices: VM Security
	Virtual Hard Disk Theft and Analysis
	Downloading a VHD Snapshot
	Retrieving a VHD’s Secrets

	Exploring the VHD with Autopsy
	Importing the VHD
	Analyzing Windows VHDs
	Analyzing Linux VHDs

	Cracking Password Hashes
	Dictionary Attacks
	Brute-Force Attacks
	Hybrid Attacks
	Rainbow Table Attacks
	Weaknesses in Windows Password Hashes

	Password Hash Attack Tools
	Attacking Hashes with Cain & Abel
	Testing Hashes with hashcat

	Using a VHD’s Secrets Against a VM
	Determining the Hostname
	Finding a Remote Administration Service

	Resetting a Virtual Machine’s Credentials
	How to Reset a VM’s Credentials
	Downsides to Password Resets

	Summary

	Chapter 6: Investigating Networks
	Best Practices: Network Security
	Avoiding Firewalls
	Virtual Machine Firewalls
	Azure SQL Firewalls
	Azure Web Application Firewalls

	Cloud-to-Corporate Network Bridging
	Virtual Private Networks
	ExpressRoute
	Service Bus
	Logic Apps

	Summary

	Chapter 7: Other Azure Services
	Best Practices: Key Vault
	Examining Azure Key Vault
	Displaying Secrets
	Displaying Keys
	Displaying Certificates
	Accessing Key Vault from Other Azure Services

	Targeting Web Apps
	Deployment Methods
	Obtaining Deployment Credentials
	Creating and Searching for Artifacts on Web App Servers

	Best Practices: Automation
	Leveraging Azure Automation
	Obtaining Automation Assets
	Hybrid Workers

	Summary

	Chapter 8: Monitoring, Logs, and Alerts
	Azure Security Center
	Utilizing Security Center’s Detection Capabilities
	Utilizing Security Center’s Prevention Capabilities

	Operations Management Suite
	Setting Up OMS
	Reviewing Alerts in OMS

	Secure DevOps Kit
	Custom Log Handling
	Summary

	Glossary
	Index

